Electroheliuminescent platform for solid phase determination of polycyclic aromatic hydrocarbons at ultra-trace level

Authors

  • G. Khaled
  • A. Kukoba
  • O. Bilash
  • Yu. Zoludov
  • D. Snizhko
  • K. Muzyka

DOI:

https://doi.org/10.30837/rt.2018.1.192.16

Abstract

An electrochemiluminescent (ECL) platform is proposed to determine the trace concentrations of polycyclic aromatic hydrocarbons (PAH) in water. Due to the PAH extraction from the aqueous solution, followed by transfer to Langmuir-Blodgett films, their immobilization on the electrode and the solid-state ECL detection has opened the possibility of determining the surfactant level at trace concentrations in the linear range 10-10 ÷ 10-13 mol.

References

Sousa J.C.G., Ribeiro, A. R., Barbosa, M. O., Pereira, M. F. R., & Silva, A. M. T. A review on environmental monitoring of water organic pollutants identified by EU guidelines // Journal of Hazardous Materials. 2018. Vol. 344. Р. 146-162.

Bruzzoniti M. C., Fungi, M., & Sarzanini, C. Determination of EPA's priority pollutant polycyclic aromatic hydrocarbons in drinking waters by solid phase extraction-HPLC // Analytical Methods. 2010. Vol.2(6). P. 739-745.

Dat N. & Chang M. B. Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies // Science of the Total Environment. 2017. Vol. 609. P. 682-693.

Kumar S., Negi S. & Maiti, P. Biological and analytical techniques used for detection of polyaromatic hydrocarbons // Environmental Science and Pollution Research. 2017. Vol.24(33). P. 25810-25827.

Muñoz J., Crivillers N., Mas-Torrent M. Carbon-Rich Monolayers on ITO as Highly Sensitive Platforms for Detecting Polycyclic Aromatic Hydrocarbons in Water: The Case of Pyrene // Chemistry - A European Journal. 2017. Vol.23(61). P. 15289-15293.

Ni Y., Wang P., Song H., Lin X., Kokot S. Electrochemical detection of benzo(a)pyrene and related DNA damage using DNA/hemin/nafion-grapheme biosensor // Anal Chim Acta. 2014. Vol. 821. P. 34-40.

Muzyka K., Saqib M., Liu Z., Zhang W., & Xu G. Progress and challenges in electrochemiluminescent aptasensors // Biosensors and Bioelectronics. 2017. Vol. 92. P. 241-258.

Li J., Yang L., Luo S., Chen B., Li J., Lin H., Cai Q., Yao S. Polycyclic aromatic hydrocarbon detection by electrochemiluminescence generating Ag/TiO(2) nanotubes // Anal Chem. 2010. Vol. 82(17). P. 7357-7361.

Wasalathanthri D. P., Malla S., Bist I., Tang C. K., Faria R. C., & Rusling J.F. High-throughput metabolic genotoxicity screening with a fluidic microwell chip and electrochemiluminescence // Lab on a Chip - Miniaturisation for Chemistry and Biology. 2013. Vol. 13(23). P. 4554-4562.

Mani V., Kadimisetty K., Malla S., Joshi A. A. & Rusling J. F. Paper-based electrochemiluminescent screening for genotoxic activity in the environment // Environmental Science and Technology. 2013. Vol. 47(4). P. 1937-1944.

Yang M., Wang Y., & Wang H. β-Cyclodextrin functionalized CdTe quantum dots for electrochemiluminescent detection of benzo[a]pyrene // Electrochimica Acta. 2015. Vol. 169. P. 7-12.

Kausar A. Survey on Langmuir–Blodgett films of polymer and polymeric composite // Polymer - Plastics Technology and Engineering. 2017. Vol. 56(9). P.932-945.

Huang J., Yang K., Liu S. & Jiang, H. High-brightness organic double-quantum-well electroluminescent devices // Applied Physics Letters. 2000. Vol. 77(12). P. 1750-1752.

Omer K. M. & Bard A. J. Electrogenerated chemiluminescence of Aromatic Hydrocarbon Nanoparticles in an Aqueous Solution // J. Phys. Chem. C. 2009. Vol. 113(27). P. 11575-11578.

Published

2018-03-30

How to Cite

Khaled, G., Kukoba, A., Bilash, O., Zoludov, Y., Snizhko, D., & Muzyka, K. (2018). Electroheliuminescent platform for solid phase determination of polycyclic aromatic hydrocarbons at ultra-trace level. Radiotekhnika, 1(192), 106–112. https://doi.org/10.30837/rt.2018.1.192.16

Issue

Section

Articles