Physical and mathematical foundations of measurements in nonlinear dynamical systems
DOI:
https://doi.org/10.30837/rt.2018.1.192.15Abstract
Physical and mathematical bases of measurements in physical non-linear dynamical systems are formulated. Physical properties, common to different systems, include: interval physical values; different modes of dynamics (including chaotic); strong dependence on the initial conditions; exposure to noise. We have used mathematical tools and methods of the dynamic chaos theory, open systems theory, fractal analysis: intervals of quantities values, fractal dimension, predictability time, model equation and others. New results and models are important for creating lasers with high stabilization of characteristics and practical application of solitons.References
Гинзбург В.Л. Какие проблемы физики и астрофизики представляются сейчас особенно важными и интересными? // УФН. 1999. Т. 169. №4. С. 419-442.
Турицын С.К., Розанов Н.Н., Яруткина И.А. Диссипативные солитоны в волоконных лазерах // УФН. 2016. Т. 186. №7. С. 713-742.
Gnatenko A.S., Machechin Y.P. Generation mode stability of a fiber ring laser // Telecommunications and Radio Engineering. 2015. V.74, №7, pp. 641-647.
Лячнев В.В. Метрологические основы теории измерительных процедур. Санкт-Петербург: Элмор, 2011. 411 с.
Хакен Г. Синергетика. Москва : Мир, 1980. 388 с.
Machekhin Yu. P. Fractal scale for time series of the results of measurements // Measurement Techniques. 2009. V. 52. №8. Pp. 835-838.
Machekhin Yu., Kurskoy Yu. Fractal-entropy analysis of measurement results in nonlinear dynamical systems // Measuring technique. 2014. V. 57. №
рp. 609-704.
Мачехин Ю. П., Курской Ю. С. Основы нелинейной метрологии. Издательство: LAP , 2014. 160 р.
Воронин А., Желтиков А. Нелинейная динамика сверхмощных ультракоротких лазерных импульсов: эксафлопные вычисления на лабораторном компьютере и субпериодные световые пули // УФН. 2016. Т. 186 №7. С. 957-966.
Кроновер Р. М. Фракталы и хаос в динамических системах. Москва : Постмаркер, 2000. 352 с.
Guide to the Expression of Uncertainty in Measurement, 2nd edn.BIPM, IEC, IFCC, ISO, IUPAC, IUPAP and OIML, 1995. 64 р.
Лоскутов А. Ю. Очарование хаоса // УФН. 2010. Т. 180. №12. С. 1304-1329.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).