Electrodynamic sensor for determining the state of water in biological objects

Authors

  • Chang Liu
  • I.N. Bondarenko
  • A.Yu. Panchenko
  • N.I. Slipchenko

DOI:

https://doi.org/10.30837/rt.2018.3.194.14

Keywords:

aperture, capacitance, coaxial line, boundary conditions, eigenfunctions, bound water, electromagnetic field components

Abstract

The distribution of free water and water associated with molecules of biological matter determines its state. The electrophysical properties of free and bound water are significantly different, and the relaxation frequency of molecules lies in the microwave range. Therefore, microwave methods of measurement are effective. The microwave sensor circuit is analyzed, for which it is possible to create a rigorous analytical model. The results of calculations of the electromagnetic field components and the transfer function of the sensor are discussed, and the dimensions of its working area are estimated.

References

Щеголева Т.Ю. Гидратное окружение и структура макромолекул // Успехи современной биологии. – 1996. – Т.116, №6. – C.700-714.

Щеголева Т.Ю. Исследование биологических объектов в миллиметровом диапазоне радиоволн. – К. : Наук. думка, 1996. – 182 с.

Panchenko A.Yu., Slipchenko N.I., Borodkina A.N. On the development of a practical technique of theoretical calibration of resonant sensors for near-field microwave diagnostics // Telecommunication and Radio Engineering. – 2014. – V.73, №15. – P. 1397-1407.

Hyde M.W., Havrilla M.J. A broadband, nondestructive microwave sensor for characterizing magnetic sheet materials // IEEE Sensors J. – 2016. – V.16, No.12. – P. 4740-4748.

Kempin M., Ghasr M.M., Case J., Zoughi R. Modified waveguide range for evaluation of stratified composites // IEEE Trans. Instrum. Meas. – 2014. – V.63, No.6. – P. 1524-1534.

Kaatze U. Techniques for measuring the microwave dielectric properties of materials // Metrologia. – 2012. – Vol.47, No.2. – P. S91-S113.

Hyde M. W. IV, Havrilla M. J., Bogle A. E. Nondestructive Determination of the Permittivity Tensor of a Uniaxial Material Using a Two-Port Clamped Coaxial Probe // IEEE Trans. Microwave Theory and Technique. – 2016. – Vol.64, No.1. – P. 239-246.

Cenanovic A., Schramm M., Schmidt L. Measurement setup for non-destructive complex permittivity determination of solid materials using two coupled coaxial probes // IEEE MTT-S Int. Microw. Symp. Dig. – 2011. – P. 1-4.

Hyde M. W. et al. Nondestructive electromagnetic materialcharacterization using a dual waveguide probe: A full wave solution // Radio Science. – 2009. – V.44,№3. P. – 10-14.

Alanen E., Lahtinen T., Nuutinen J. Variational Formulation of Open-Ended Coaxial Line in Contact with Layered Biological Medium // IEEE Transaction on biomedical engineering. – 1998. – Vol.45, No.10. – P.1241-1247.

Huang R.. Zhang D. Analysis of open-ended coaxial probes by using a two-dimensional Lnite-diŬerence frequency-domain method // IEEE Trans. Instrum. Meas. – 2008. – Vol.57, No.5. – P. 931-939.

Maftooli H., Karami H.R., Sadeghi S.H.H., Moini R. Output signal prediction of an open-ended coaxial probe when scanning arbitrary-shape surface cracksin metals // IEEE Trans. Instrum. Meas. – 2012. – Vol.61, No.9. – P. 2384-2391.

McLaughlin B.L., Robertson P.A. Miniature open-ended coaxial probes for dielectric spectroscopy applications // J. Phys. D: Appl. Phys. – 2007. No.40. – P.45–53.

Hosseini M. H. Heidar H., Shams M. H. Wideband Nondestructive Measurement of Complex Permittivity and Permeability Using Coupled Coaxial Probes // IEEE Transactions on Instrumentation and Measurement. – 2017. – V.66, №.1. – P. 148-157.

Poumaropoulos C.L., Misra D. A Study on the Coaxial Aperture Electromagnetic Sensor and Its Application in Material Characterization // IEEE Transaction on instrumentation and measurement. – 1994. – Vol.43, No.2. – P.111-114.

Blackham D.V., Pollard R.D. An Improved Technique for Permittivity Measurements Using a Coaxial Probe // IEEE Transaction on Instrumentation and Measurement. – 1997. – Vol.46, No.5. – P.1093-1099.

Gregory A.P., Clarke R.N. Dielectric metrology with coaxial sensors/ A. P.Gregory, // Meas. Sci. Technol. – 2007. – No.18. – P.1372-1386.

Nozokido T., Bae J., Mizuno K. Scanning Near-Field Millimeter-Wave Mi-croscopy Using a Metal Slit as a Scanning Probe // IEEE Transaction on Microwave Theory and Technique. – 2001. – Vol.49, No.3. – P.491-499.

Panchenko A.Yu. Modeling a small aperture resonator type microwave meter of substance parameters // Telecommunications and Radio Engineering. – 1998. – V.52, No.8. – P. 118-121.

Лю Чан, Панченко А. Ю., Слипченко Н. И., Зайченко О. Б. Ближнеполевой коаксиальный сенсор открытого типа. Оценка пространственной разрешающей способности измерительной апертуры // Вестник НТУ КПИ. Серия Радиотехника. Радиоаппаратостроение. – 2017. – Вып.71. – С.17-24.

Панченко Б.А. Тензорные функции Грина уравнений Максвелла для цилиндрических областей // Радиотехника. – 1970. – Вып. 15. – С. 82-91.

Tai C.T. Dyadic Green's functions for a coaxial line // IEEE Trans. of Antennas and Propagation. – 1983. – Vol.48, No.2. – P. 355-358.

Ch. Lu, Panchenko A.Yu., Slipchenko Mykola I. An integral equation for the field distribution within the aperture plane of the coaxial sensor // Telecommunications and Radio Engineering. Т. 75. – 2016. – Вып. 7. – P.587-594. DOI: 10.1615/TelecomRadEng.v75.i7 20

Лю Чан, Панченко А. Ю., Слипченко Н. И., Зайченко О. Б. Коаксиальный сенсор открытого типа. Интегральное уравнение электрического поля в плоскости апертуры // Вестник НТУ КПИ. Серия Радиотехника. Радиоаппаратостроение. – 2017. – Вып.69. – С.11-16.

Гордиенко Ю.Е., Панченко А.Ю., Фар Р.С. Приближение заданного поля в задачах определения характеристик резонаторных СВЧ – датчиков апертурного типа // Радиотехника. – 1998. – Вып.107. – С. 93-103.

Wen Mingming. Ch. Liu, Panchenko A.Yu., Slipchenko N.I. Evaluation of influence of microwave radiation sensor in the form of an open end of the coaxial line on its metrological characteristics // Telecommunications and Radio Engineering. – 2015. – V.74, No.15. – P.1355-1366.

Published

2018-09-26

How to Cite

Liu, C., Bondarenko, I., Panchenko, A., & Slipchenko, N. (2018). Electrodynamic sensor for determining the state of water in biological objects. Radiotekhnika, 3(194), 104–111. https://doi.org/10.30837/rt.2018.3.194.14

Issue

Section

Articles