Adaptive method with noise- and signal-dependent switching of filters for suppression of non-stationary noise in an electrocardiogram signal in real time
DOI:
https://doi.org/10.30837/rt.2018.3.194.12Keywords:
ECG signal, EMG noise, adaptive filtering in real timeAbstract
А new method for suppressing non-stationary noise in an electrocardiogram (ECG) in real time with a noise- and signal-dependent switching of filter with the most suitable processing of local signal segment is proposed. Adaptive algorithms are designed on the basis of this method. Statistical estimates of efficiency are obtained using such criteria as mean-square error, maximum absolute deviation, and signal-to-noise ratio for a model of ECG signal sampled at 1 kHz under conditions of different levels of additive Gaussian noise. It is shown that, with a very low noise level, the proposed algorithms do not distort the QRS-complex, and with a middle and high noise level, they provide a high degree of its suppression. In comparison with the modern dynamic algorithm of filtering of electromyographic (EMG) noise in an ECG, the proposed adaptive filters have an advantage in efficiency and smaller processing delay. Good quality of suppression of different levels of EMG noise in the ECG signal is demonstrated.References
Astola J., Kuosmanen P. Fundamentals of Nonlinear Digital Filtering. USA: CRC Press LLC, 1997. 276 p.
Christov I., Daskalov I. Filtering of electrocardiogram artifacts from the electrocardiogram // Medical Engineering & Physics. 1999. Vol.21. P.731-736.
Bortolan G., Christov I. Dynamic Filtration of High-Frequency Noise in ECG Signal // Computing in Cardiology, 7-10 Sept. 2014. Cambridge (USA), 2014. Vol.41. P.1089-1092.
Bortolan G., Christov I., Simova I., Dotsinsky I. Noise processing in exercise ECG stress test for the analysis and the clinical characterization of QRS and T wave alternans // Biomedical Signal Processing and Control. 2015. Vol.18. P.378-385.
Christov I., Neycheva T., Schmid R., Stoyanov T., Abächerli R. Pseudo real-time low-pass filter in ECG, self-adjustable to the frequency spectra of the waves // Medical & Biological Engineering & Computing. 2017. Vol.55, No.9. P.1579-1588.
Christov I., Neycheva T., Schmid R. Fine tuning of the dynamic low-pass filter for electromyographic noise suppression in electrocardiograms // Computing in Cardiology, 24-27 Sept. 2017. Rennes (France), 2017. Vol.44. P.1-4.
Christov I., Raikova R., Angelova S. Separation of electrocardiographic from electromyographic signalsusing dynamic filtration // Medical Engineering & Physics. 2018.
Gotchev A., Christov I., Egiazarian K. Denoising of electrocardiogram from electromyogram artifacts by combined transform-domain and dynamic approximation method // ICASSP’2002: Proc. of the IEEE Int. Conf. on Acoustics, Speech and Signal Processing. P.3872-3875. doi: 10.1109/ICASSP.
Dotsinsky I., Mihov G. Simple Approach for Tremor Suppression in Electrocardiograms // Int. J. Bioaotomation. 2010. Vol.14, No.2. P.129-138.
Pander T. Impulsive Noise Filtering In Biomedical Signals With Application of New Myriad Filter // Biosignal' 2010: Proc. of the Int. Conf. 2010. Vol.20. P.94-101.
Pander T. An application of weighted myriad filter to suppression an impulsive type of noise in biomedical signals // TASK Quartarly. 2004. Vol.2, No.8, P.199-216.
Tulyakova N. Locally-Adaptive Myriad Filters for Processing ECG Signals in Real Time // Int. J. Bioaotomation. 2017. Vol.21, No.1. P.5-18.
Тулякова Н.О., Трофимчук А.Н., Стрижак А.Е. Алгоритмы фильтрации электрокардиограммы с динамически изменяемым размером окна // Радиоэлектронные и компьютерные системы. – 2016. – №2 (76). – С.4-14.
Тулякова Н.О., Трофимчук А.Н., Будник Н.Н., Стрижак А.Е. Сравнительный анализ локально-адаптивных нелинейных фильтров для комплексной модели одномерного сигнала // Радиоэлектронные и компьютерные системы. – 2015. – №2 (72). – С.97-111.
Тулякова Н.О., Трофимчук А.Н., Стрижак А.Е. Адаптивные алгоритмы устранения электромиографического шума в сигнале электрокардиограммы // Радиотехника. – 2017. – Вып.188. – С.70-78. [Transl.: Tulyakova N., Trofimchuk A., Strizhak A. Adaptive algorithms for elimination of electromyographic noise in the electrocardiogram signal // Telecommunications and Radio Engineering. – 2018. – Vol.77, No.6. – P.549-561. doi: 10.1615/TelecomRadEng.v77.i6.70]
Тулякова Н.О., Трофимчук А.Н., Стрижак А.Е. Адаптивные мириадные фильтры для обработки сигналов электрокардиограммы, регистрируемых с высокой частотой дискретизации // Радиоэлектронные и компьютерные системы. – 2016. – №4 (78). – С.97-107.
Тулякова Н.О. Локально-адаптивная мириадная фильтрация сигнала электрокардиограммы // Радиотехника. – 2015. – Вып.180. – С.152-162.
Savitzky A., Golay M. Smoothing and differentiation of data by simplified least squares procedures // Analytical Chemistry. 1964. Vol.36. P.1627-1639. doi: 10.1021/ac60214a047.
Davies L., Gather U. The identification of multiple outliers // J. American Statistical Assoc. 1993. Vol.88. P.782-801.
Pearson R.K., Neuvo Y., Astola J. The Class of Generalized Hampel Filters // EUSIPCO: Proc. of the 23td European Signal Processing Conf. 21 Aug.-4 Sept. 2015. Nice (France), 2015. P.2546-2550. doi: 10.1109/EUSIPCO.
Тулякова Н.О., Лопаткин Р.Ю., Трофимчук А.Н., Стрижак А.Е. Применение локально-адаптивной мириадной фильтрации для комплексной модели одномерного сигнала // Радиоэлектронные и компьютерные системы. – 2017. – №3 (83). – С.14-25.
Tulyakova N., Neycheva T., Trofymchuk O., Stryzhak O. Locally-adaptive myriad filtration of one-dimensional complex signal // Int. J. Bioaotomation. 2018.
Melnik V.P., Lukin V.V., Zelensky A.A., Astola J.T., Kuosmanen P. Local Activity Indicators: Analysis and Application to Hard-Switching Adaptive Filtering of Images // Optical Engineering Journal. 2001. Vol.40, No.8. P.1441-1455. doi:10.1117/1.1385815.
Lukin V.V., Zelensky A.A., Tulyakova N.O., Melnik V.P. Adaptive method for 1-D signal processing based on nonlinear filter bank and Z-parameter // NSIP`99: Proc. of the IEEE/EURASIP Workshop on Nonlinear Signal and Image Processing. Antalya (Turkey), 1999. Vol.1, P.287-291.
Абрамов С.К. Алгоритм реализации мириадной фильтраци // Авиационно-космическая техника и технология. – 2000. – Вып.21. – С.143-147.
Тулякова Н.О., Трофимчук А.Н., Стрижак А.Е. Алгоритмы мириадной фильтрации // Радиоэлектрон-ные и компьютерные системы. – 2014. – №4 (68). – С.76-83.
Gonzalez J.G., Paredes J.L., Arce G.R. Zero-Order Statistics: A Mathematical Framework for the Processing and Characterization of Very Impulsive Signals // IEEE Transactions on Signal Processing. 2006. Vol.54, No.10. P.3839-3851. doi: 10.1109/TSP.2006.880306.
Carrillo R.E., Aysal T.C., Barner K.E. A Generalized Cauchy Distribution Framework for Problems Requiring Robust Behavior // EURASIP Journal on Advances in Signal Processing. 2010. Vol.2010. 19 p. doi: 10.1155/2010/312989.
Gonzalez J.G., Arce G.R. Optimality of the myriad filter in practical impulsive-noise environments // IEEE Transactions on Signal Processing. 2001. Vol.49, No.2. P.438-441. doi: 10.1109/78.902126.
Kalluri S., Arce G.R. Adaptive weighted myriad filter algorithms for robust signal processing in -stable noise environments // IEEE Transactions on Signal Processing. 1998. Vol.46, No.2. P.322-334. doi: 10.1109/78.655418.
Abramov S.K., Lukin V.V., Astola J. Adaptive myriad filter // СD-ROM Proc. of NSIP'2001. Baltimore (USA), 2001. 5 p.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).