Analysis and investigation of algebraic geometric codes properties

Authors

  • А.А. Kuznetsov
  • I.P. Kolovanova
  • D.I. Prokopovych-Tkachenko
  • T.Y. Kuznetsova

DOI:

https://doi.org/10.30837/rt.2018.4.195.08

Keywords:

algebraic geometric code, energy gain, orthogonal signal, noise-immune coding

Abstract

Linear block noise-proof codes constructed according to algebraic curves (algebraic geometric codes) are considered, their design properties are evaluated, algorithms of construction and decoding are studied. The energy efficiency of the transmission of discrete messages by M-ary orthogonal signals in the application of algebraic geometric codes is studied; the achievable energy gain from the use of noise-immune coding is estimated. It is shown that in discrete channels without memory it is possible to obtain a significant energy gain, which increases with the transition to long algebraic geometric codes constructed by curves with a large number of points with respect to the genus of the curve. It is established that the computational complexity of implementing algebraic geometric codes is comparable to other known noise-resistant codes, for example, Reed-Solomon codes and others. Thus, high energy efficiency in combination with acceptable computational complexity of implementation confirm the prospects of algebraic geometric codes using in modern telecommunication systems and networks to improve the noise immunity of data transmission channels.

References

Гоппа В.Д. Коды на алгебраических кривых // Докл. АН СССР. – 1981. – Т.259. № 6. – С. 1289-1290.

Гоппа В.Д. Коды и информация // Успехи математических наук. – 1984. –Т.30, вып. 1(235). – С. 77-120.

Цфасман М.А. Коды Гоппы, лежащие выше границы Варшамова – Гилберта // Проблемы передачи информации. – 1982. – Т.18, №3. – С. 3-6.

Шафаревич И.Р. Основы алгебраической геометрии. – Москва : Наука, 1972. – 568с.

Стейн С., Джонс Дж. Принципы современной теории связи и их применение к передаче дискретных сообщений. – Москва : Связь, 1971. – 376с.

Касами Т., Токура Н., Ивадари Е., Инагаки Я. Теория кодирования. – Москва : Мир, 1978. – 576с.

Блейхут Р. Теория и практика кодов, контролирующих ошибки : пер. с англ. – Москва : Мир, 1986. – 576 с.

Мак-Вильямс Ф.Дж., Слоэн Н.Дж.А. Теория кодов, исправляющих ошибки. – Москва : Связь, 1979. – 744 с.

Feng G.L., Rao T.R.N. Decoding algebraic geometric codes up to the designed minimum distance // IEEE Trans. Inform. Theory. – 1993. – Vol. 39, N 1 – P. 37-46.

Sakata S., Justesen J., Madelung Y., Jensen H.E., Hoholdt T. Fast Decoding of Algebraic-Geometric Codes up to the Designed Minimum Distance // IEEE Trans. Inform. Theory. – 1995. – Vol. 41, N 5 – P. 1672-1677.

Olshevksy V., Shokrollahi A. A displacement structure approach to decoding algebraic geometric codes // Proceedings of the 31st annual ACM Symposium on Theory of Computing (STOC). – 1999. – P. 235-244.

Published

2018-12-28

How to Cite

Kuznetsov А., Kolovanova, I., Prokopovych-Tkachenko, D., & Kuznetsova, T. (2018). Analysis and investigation of algebraic geometric codes properties. Radiotekhnika, 4(195), 70–88. https://doi.org/10.30837/rt.2018.4.195.08

Issue

Section

Articles