Analysis and investigation of algebraic geometric codes properties
DOI:
https://doi.org/10.30837/rt.2018.4.195.08Keywords:
algebraic geometric code, energy gain, orthogonal signal, noise-immune codingAbstract
Linear block noise-proof codes constructed according to algebraic curves (algebraic geometric codes) are considered, their design properties are evaluated, algorithms of construction and decoding are studied. The energy efficiency of the transmission of discrete messages by M-ary orthogonal signals in the application of algebraic geometric codes is studied; the achievable energy gain from the use of noise-immune coding is estimated. It is shown that in discrete channels without memory it is possible to obtain a significant energy gain, which increases with the transition to long algebraic geometric codes constructed by curves with a large number of points with respect to the genus of the curve. It is established that the computational complexity of implementing algebraic geometric codes is comparable to other known noise-resistant codes, for example, Reed-Solomon codes and others. Thus, high energy efficiency in combination with acceptable computational complexity of implementation confirm the prospects of algebraic geometric codes using in modern telecommunication systems and networks to improve the noise immunity of data transmission channels.References
Гоппа В.Д. Коды на алгебраических кривых // Докл. АН СССР. – 1981. – Т.259. № 6. – С. 1289-1290.
Гоппа В.Д. Коды и информация // Успехи математических наук. – 1984. –Т.30, вып. 1(235). – С. 77-120.
Цфасман М.А. Коды Гоппы, лежащие выше границы Варшамова – Гилберта // Проблемы передачи информации. – 1982. – Т.18, №3. – С. 3-6.
Шафаревич И.Р. Основы алгебраической геометрии. – Москва : Наука, 1972. – 568с.
Стейн С., Джонс Дж. Принципы современной теории связи и их применение к передаче дискретных сообщений. – Москва : Связь, 1971. – 376с.
Касами Т., Токура Н., Ивадари Е., Инагаки Я. Теория кодирования. – Москва : Мир, 1978. – 576с.
Блейхут Р. Теория и практика кодов, контролирующих ошибки : пер. с англ. – Москва : Мир, 1986. – 576 с.
Мак-Вильямс Ф.Дж., Слоэн Н.Дж.А. Теория кодов, исправляющих ошибки. – Москва : Связь, 1979. – 744 с.
Feng G.L., Rao T.R.N. Decoding algebraic geometric codes up to the designed minimum distance // IEEE Trans. Inform. Theory. – 1993. – Vol. 39, N 1 – P. 37-46.
Sakata S., Justesen J., Madelung Y., Jensen H.E., Hoholdt T. Fast Decoding of Algebraic-Geometric Codes up to the Designed Minimum Distance // IEEE Trans. Inform. Theory. – 1995. – Vol. 41, N 5 – P. 1672-1677.
Olshevksy V., Shokrollahi A. A displacement structure approach to decoding algebraic geometric codes // Proceedings of the 31st annual ACM Symposium on Theory of Computing (STOC). – 1999. – P. 235-244.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).