Comparative studies and analysis of efficiency code-based hybrid cryptosystem

Authors

  • А.А. Kuznetsov
  • Y.І. Gorbenko
  • A.S. Kiian
  • А.А. Uvarova
  • T.Y. Kuznetsova

DOI:

https://doi.org/10.30837/rt.2018.4.195.07

Keywords:

Algebraic codes, Code-based cryptography, McEliece cryptosystem, Niederreiter cryptosystem, Public-key cryptosystem, Post-quantum cryptosystem

Abstract

The basic principles of construction and operation of McEliece and Niederreiter cryptosystems based on the use of error-correcting codes are considered. A new hybrid cryptosystem, that combines rules of encryption according to the above-mentioned schemes, is proposed. Also, an analysis and comparative studies are carried out in terms of stability, volume of public and private keys, length of ciphertext and relative speed of information transmission of the new proposed scheme and McEliece and Niederreiter cryptosystems presented both in an analytical form and by means of a graphic. Comparative studies revealed that the hybrid cryptosystem retains the positive aspects of its predecessors, as well as allows increase in the relative transmission rate with the preservation of the stability indicator to the classical and quantum cryptanalysis, but, unfortunately, one important limitation is still preserved - a large size of the required key data.

References

Menezes A.J., P.C. van Oorschot, Vanstone S.A. // Handbook of Applied Cryptography. CRC Press, 1997. – 794 р.

Ferguson N. and Schneier B. Practical Cryptography. – John Wiley & Sons, 2003. – 432 p.

Moody D. Post-Quntum Cryptography: NIST’s Plan for the Future // The Seventh International Conference on Post-Quntum Cryptography, Japan, 2016. [On-line]. Available: https://pqcrypto2016.jp

Koblitz N. and Menezes A.J. A Riddle Wrapped in an Enigma. [On-line] Available: https://eprint.iacr.org/2015/1018.pdf

MacWilliams F. J. and Sloane N. J. A. The theory of error-correcting codes. North-Holland, Amsterdam, New York, Oxford, 1977. – 762 p.

McEliece R. J. A public-key cryptosystem based on algebraic coding theory // DSN Progress Report 42-44, Jet Propulsion Lab., January-February, 1978. – P. 114-116.

Kuznetsov A., Svatovskij I., Kiyan N. and Pushkar'ov A. Code-based public-key cryptosystems for the post-quantum period. 2017 // 4th International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T). – Kharkov, 2017. – P. 125-130.

Finiasz M. and Sendrier N. Security bounds for the design of codebased cryptosystems // M. Matsui, ed., Advances in Cryptology, ASIACRYPT. – 2009. – Vol. 5912 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2009. – P. 88 -105.

Courtois N., Finiasz M. and Sendrier N. How to achieve a McEliece-based digital signature scheme // Advances in Cryptology – ASIACRYPT. – 2001. – Vol. 2248. – P. 157–174.

Niederreiter H. Knapsack-type cryptosystems and algebraic coding theory // Problem Control and Inform Theory. – 1986. – Vol. 15. – P. 19-34.

Kuznetsov A., Pushkar'ov A., Kiyan N. and Kuznetsova T. Code-based electronic digital signature // IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT), Kyiv, Ukraine, 2018. – P. 331-336.

Kuznetsov A., Lutsenko M., Kiian N., Makushenko T. and Kuznetsova T. Code-based key encapsulation mechanisms for post-quantum standardization // IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT). – Kyiv, Ukraine, 2018. – P. 276-281.

Kuznetsov A., Kiian A., Lutsenko M., Chepurko I. and Kavun S. Code-based cryptosystems from NIST PQC // IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT). – Kyiv, Ukraine, 2018. – P. 282-287.

Sidelnikov V. M. and Shestakov S. O. On insecurity of cryptosystems based on generalized Reed-Solomon codes // Discrete Mathematics and Applications. – 1992. – р. 439-444.

Yuan Xing Li, R. H. Deng and Xin Mei Wang. On the equivalence of McEliece's and Niederreiter's public-key cryptosystems // IEEE Transactions on Information Theory. – Jan. 1994. – Vol. 40, no. 1. – P. 271-273.

Bernstein D., Buchmann J. and Dahmen E. Post-Quantum Cryptography. – Springer-Verlag, Berlin-Heidleberg, 2009. – 245 p.

Proos J. and Zalka C. 2003. Shor's discrete logarithm quantum algorithm for elliptic curves // Quantum Info. Comput. – 3, 4 (July 2003). – P. 317-344.

Bernstein D.J., Lange T., Peters C. Attacking and Defending the McEliece Cryptosystem // Buchmann J., Ding J. (eds) Post-Quantum Cryptography. PQCrypto 2008. Lecture Notes in Computer Science. – Vol. 5299. Springer, Berlin, Heidelberg. – pp 31-46.

Grover L. A fast quantum mechanical algorithm for database search // Proceedings of the 28th annual ACM symposium on the theory of computing (STOC, 96). – ACM Press, New York, 1996. – P. 212-219.

Sendrier N. Decoding one out of many // Yang, B.Y., ed.: PQCrypto 2011. – Vol. 7071 of LNCS. Springer, 2011. – P. 51-67.

Published

2018-12-28

How to Cite

Kuznetsov А., Gorbenko, Y., Kiian, A., Uvarova А., & Kuznetsova, T. (2018). Comparative studies and analysis of efficiency code-based hybrid cryptosystem. Radiotekhnika, 4(195), 61–69. https://doi.org/10.30837/rt.2018.4.195.07

Issue

Section

Articles