Technology of local microwave heating
DOI:
https://doi.org/10.30837/rt.2019.1.196.17Keywords:
localization, microwave heating, coaxial probe, near-field radiation source, temperature distributionAbstract
Experimental studies of the possibilities of local microwave heating technology practical implementation were carried out. The correspondence of the existing theoretical models of the process to what is happening in practice is shown. The results of measuring the temperature distribution over the sample when exposed to a radiating microwave coaxial probe are given. The directions for further improvement of the operating modes and the main components of the microwave modifier are determined.References
Диденко А.Н. СВЧ энергетика: Теория и практика. Mосква : Наука, 2003. 446 с.
Thompson K., Booske J. H., Ives R.L., Lohr J., Gorelov Y., Kajiwara K. Millisecond microwave annealing: Driving microelectronics nano // J. Vac. Sci. Technol. B 23„3…, May/Jun 2005 p. 970-977.
Foggiato, J. Implementation of flash technology for ultra-shallow junction formation: challenges in process integration [Text] / J. Foggiato, W. S. Yoo // Journal of Vacuum Science and Technology. 2006. Vol. B 24. P. 515–520.
Chu P. K. Semiconductor applications of plasma immersion ion implantation // Plasma Physics and Controlled Fusion. 2003. Vol. 45. P. 555–570.
Kim S. D. Formation and control of box-shaped ultra-shallow junction using laser annealing and pre-amorphization implantation / S. D. Kim, C. M. Park, J. C. S. Woo // Solid State Electronics. 2004. Vol. 49. P. 131–135.
Takii E. Ultra-shallow junction formation by green-laser annealing with light absorber / Е. Takii, Т. Eto, К. Kurobe, К. Shibahara // Japanese Journal of Applied Physics. Part 2. 2005. Vol. 44. P. 756–759.
Sarubbi F. Chemical vapor deposition of boron layers on silicon for controlled nanometer-deep p+n junction formation / F. Sarubbi, T. L. M. Scholtes, L. K. Nanver // Journal of Electronic Materials. 2010. Vol. 39. P. 162–173.
Jerby E., Dikhtyar V. Drilling into hard non-conductive materials by localized microwave radiation // Trends in Microwave and HF Heating, Springer Verlag, 2002. Р. 1-9.
Livshits P. , Dikhtyar V., Inberg A., Shahadi A., Jerby E. Local doping of silicon by a point-contact microwave applicator // Microelectronic engineering. 2011. Vol. 88. P. 2831-2836.
Meir Y., Jerby E. Localized rapid heating by low-power solid-state microwave drill // IEEE Transactions on Microwave Theory and Techniques. 2012. Vol. 60, N 8. P. 2665 –2672.
Bonifas C. J. An examination of athermal photonic effects on boron diffusion and activation during microwave rapid thermal processing / C. J. Bonifas, К. Thompson, J. H. Booske, R. F. Cooper // Journal of Microwave Power and Electromagnetic Energy. 2008. Vol. 42. P.23–34.
Noh, H. Wafer bounding using microwave heating of parylene intermediate layers / Н. Noh, К. Moon, А. Cannon, J. Hesketh, C. P. Wong // Journal of Micromechanics and Microengineering. 2004. Vol. 14. P. 625–631.
James, R. B. Melting of silicon surfaces by high-power pulsed microwave radiation / R. B.James, P. R. Bolton, R. A. Alvarez at al. // Journal of Applied Physics. 1988. Vol. 64. P. 3243–3253.
Herskowits, R. Silicon heating by a microwave-drill applicator with optical thermometry / R. Herskowits, P. Livshits, S. Stepanov at al. // Semiconductor Science and Technology. 2007. Vol. 22. P. 863–869. 1
Jerby, E. The microwave drill / E. Jerby, V. Dichtyar, O. Aktushev, U. Grosglick // Science. 2002. Vol. 298. P. 587–589.
Jerby E., Aktushev O., Dikhtyar V. Theoretical analysis of the microwave-drill near-field localized heating effect // Journal of Applied Physics. 2004. Vol. 97. 034909-1 034909-7.
Chen, L.F. Microwave Electronics: Measurement and Materials Characterization / L.F. Chen, C.K. Ong, C.P. Neo, V.V. Varadan, V.k. Varadan. John Willy & Sons, Ltd, 2004. 537 p.
Гордиенко Ю. Е. Ближнеполевой СВЧ датчик на основе конусного коаксиального резонатора / Ю. Е. Гордиенко, С. Ю. Ларкин, А. М. Яцкив // Радиотехника. 2009. № 159. С. 309–314.
Давидович М. В. Коаксиальный зонд для контроля параметров многослойного магнитодиэлектрика: прямая и обратная задачи // Радиотехника и электроника. 2006. Т. 51, № 11. С. 1308–1315.
Гордиенко Ю.Е. Одномодовые резонаторные измерительные преобразователи в общей теории СВЧ диагностики материалов / Ю.Е. Гордиенко, Ю.И. Гуд, Е.Ю. Корягина, Н.И. Слипченко // Радиоэлектроника и информатика. 2007. № 2. С. 4–8.
Гордиенко Ю. Е. Высоколокальный СВЧ нагрев полупроводников и диэлектриков / Ю. Е. Гордиенко, Д.А. Полетаев, А.М. Проказа, Н.И. Слипченко // Прикладная радиоэлектроника. 2013. Т. 11, №3. С.426-430.
Гордиенко Ю.Е., Ларкин С.Ю., Чхотуа М.С.Е. Бесконтактный режим работы при сканирующей микроволновой микроскопии // Радиотехника. 2012. № 170. С. 73–78.
Гордиенко Ю. Е., Левченко А.В., Щербак Е.Л. Влияние зазора между зондом и объектом на высоколокальный сканирующий СВЧ нагрев материалов // Прикладная радиоэлектроника. 2015. №3. С. 240-245.
Гордиенко Ю.Е., Полищук А.В., Пятайкина М.И. СВЧ высоколокальный сканирующий разогрев в технологи микро- и наноэлектроники // Физическая инженерия поверхности. Харьков : ХНУ, 2015. Т.13, №2. С.209-217.
Гордиенко Ю. Е., Щербак Е. Л., Левченко А. В. Основные положения теории высоколокального сканирующего СВЧ нагрева полупроводников и диэлектриков // Физическая инженерия поверхности. Харьков : ХНУ, 2015.Т.13, №3. С.348-355.
Gordienko Yu. Ye., Slipchenko N.I., Larkin S. Yu., Shcherbak Ye. L. Local MW Heating-Up Kinetics in Semiconductors and Dielectrics // Telecommunication and Radio Engineering, Begell Hous, Inc., NY, (USA). 2015. Vol. 74, N 9. Р. 787-795.
Bondarenko I.N., Gordienko Yu.Ye., Levchenko A.V. Submillimetric localization of microwave diagnostics and modification of objects of various nature // 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMV′2016), Kharkiv, Ukraine, 2016. № 7538014. DOI: 10.1109/MSMW.2016.7538014.
Bondarenko I.N., Gorbenko E.A., Krasnoshok V.I. Microwave switch based on waveguide T-junction for compression resonant pulse former // Telecommunications and Radio Engineering. Begell Hous, Inc., NY, (USA). 2017. Vol. 76, N 6. Р. 469-475.
Bondarenko I.N., Gorbenko E.A., Krasnoshok V.I. Microwave switch based on a combined coaxial-waveguide tee for a cavity pulse shaper // Telecommunications and Radio Engineering. Begell Hous, Inc., NY, (USA). 2018. Vol. 77, N 5. Р. 391-397.
Bondarenko I.N., Gorbenko E.A. Formation of powerful microwave pulses using resonator storage // Telecommunications and Radio Engineering Begell Hous, Inc., NY, (USA). 2018. Vol. 77, N 15. Р.1311-1319.
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).