The microstrop step discontinuity analysis by transverse resonance technique: method of boundary value problem algebraization

Authors

  • Ю.В. Рассохіна
  • В.Г. Крижановський

DOI:

https://doi.org/10.30837/rt.2019.1.196.15

Keywords:

microstrip line, step discontinuity, orthogonal polynomials, transverse resonance method, scattering characteristics

Abstract

The two-dimensional eigenfunctions of the magnetic and electric vector potentials are constructed in the form of their expansion in series of Chebyshev orthogonal polynomials of 1st and 2nd kind to describe the current density in a strip transmission line with a step discontinuity of finite length. The solving boundary value problems algorithms for the resonant frequencies of a symmetric microstrip resonator with a capacitive section in it are developed and investigated on convergence. The account of the field behavior on thin edge in a nonuniform strip line provides the fast convergence of algorithm and small orders of solvable linear algebraic equations system. As examples of application, the transverse resonance method was used to calculate the scattering characteristics on 2-plane symmetric discontinuities consisting of a capacitive section of a microstrip line and slot resonators of complex shape in its ground plane.

References

Itoh T. (Ed.) Numerical techniques for microwave and millimeter-wave passive structures. New York : Wiley, 1989. 707 p.

Bornemann J., Arndt F. Transverse resonance, standing wave, and resonator formulations of the ridge waveguide eigenvalue problem and its application to the design of E-plane finned waveguide filters // IEEE Trans. on MTT. 1990. V. 38, No 8. P. 1104–1113.

Schwab W., Menzel W.. On the design of planar microwave components using multilayer structures // IEEE Trans. Microwave Theory Tech. 1992. vol. MTT-40, No 1. P. 67–72.

Itoh T., Mittra R. A Technique for Computing Dispersion Characteristics of Shielded Microsteip Lines // IEEE Trans. on Microw. Theory and Techn. 1974. V. 22, No 10. P. 896–898.

Itoh T. Analysis of Microstrip Resonators // IEEE Trans. on Microw. Theory and Techn. 1974, V. 22, No 11. P. 946–952.

Itoh T. Spectral Domain Immitance Approach for Dispersion Characteristics of Generalized Printed Transmission Lines // IEEE Trans. on Microw. Theory and Techn. 1980. V. 28, No 7. P. 733–736.

Веселов Г. И. Микроэлектронные устройства СВЧ. Москва : Высш. шк., 1988. 280 с.

Рассохина Ю. В., Крыжановский В. Г. Метод анализа неоднородностей в полосково-щелевых структурах. Ч. 1: Анализ скачка ширины в микрополосковой линии методом поперечного резонанса // Радиотехника. 2016. Вып. 187. С. 91–99.

Yulia V. Rassokhina; Vladimir G. Krizhanovski. The microstrop line step discontinuity analysis by transverse resonance technique: Method of boundary value problem algebraization // 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET). Year: 2018. P 632–636. (IEEE Conferences).

Рассохина Ю. В., Крыжановский В. Г.. Метод анализа неоднородностей в полосково-щелевых структурах. Ч. 2: Анализ комплексных неоднородностей в трехслойных планарных структурах // Радиотехника. 2017. Вып. 188. С. 20–25.

Bornemann J.. A scattering-type transverse resonance technique for the calculation of (M)MIC transmission line characteristics // IEEE Trans. on Microw. Theory and Techn. 1991. V. 39, No 12. P. 2083–2088.

Рассохина Ю. В., Крыжановский В. Г. Режекторный фильтр на Н-образном щелевом резонаторе в экранирующем слое микрополосковой линии // Радиотехника. 2015. Вып. 182. C. 129–136.

Rassokhina Yu. V. Krizhanovski V. G. The Analysis of Distributed Two-Layers Components in Three-Layer Planar Structure // Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv. 2018. № 72. C. 5–12.

Рассохина Ю. В., Крыжановский В. Г. Анализ связанных щелевых резонаторов сложной формы в металлизированной плоскости микрополосковой линии передачи методом поперечного резонанса // Изв. ВУЗов «Радиоэлектроника». 2012. Т. 55, №5. C. 29–39.

How to Cite

Рассохіна, Ю., & Крижановський, В. (2019). The microstrop step discontinuity analysis by transverse resonance technique: method of boundary value problem algebraization. Radiotekhnika, 1(196), 117–129. https://doi.org/10.30837/rt.2019.1.196.15

Issue

Section

Articles