Operator method in diffraction by semi-infinite graphene grating
DOI:
https://doi.org/10.30837/rt.2019.1.196.14Keywords:
graphene, semi-infinite grating, operator equationAbstract
Diffraction of the H- polarized plane electromagnetic wave in the THz range by the semi-infinite graphene strip grating is considered. The non-linear operator equation relatively unknown reflection operator of the structure is presented. The reflection operator of a single graphene strip is obtained with the use of the method of singular integral equations. The dependencies of the total scattering cross section as well as field patterns at the plasmon resonance frequency are represented.References
Xu Z., Wu D., Liu Y., Liu C., Yu Z., Yu L., Ye H. Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons // Nanoscale Res. Lett. B. 2018. Vol. 13. P. 143-8.
Francescato Y., Giannini V., Yang J., Huang M., Maier S. A. Graphene sandwiches as a platform for broadband molecular spectroscopy // ACS Photonics. В. 2014. Vol. 1. No.5. P. 437-443.
Jornet J. M., Akyildiz I. F. Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks // IEEE J. Sel. Areas Communications. В. 2013. Vol. 31. P. 685-694.
Nikitin A. Y., Guinea F., Garcia-Vidal F. J., Martin-Moreno L. Edge and waveguide terahertz surface plasmon modes in graphene microribbons // Phys. Rev. B. 2011. Vol. 84. P. 161407(R)–161407(4).
Kaliberda M. E., Lytvynenko L. M., Pogarsky S. A. Simulation of infinite periodic graphene planar grating in the THz range by the method of singular integral equations // Turk. J. Elec. Eng. and Comp. Sci. B. 2018. Vol. 26. No. 4. P. 1724-1735.
Zinenko T.L., Matsushima A., Nosich A.I. Surface-plasmon, grating-mode, and slab-mode resonances in the H- and E-Polarized THz wave scattering by a graphene strip grating embedded into a dielectric slab // IEEE J. on Sel. Topics in Quantum Electronics. B. 2017. Vol. 23. No. 4. P. 4601809.
Shapoval O. V., Gomez-Diaz J. S., Perruisseau-Carrier J., Mosig J. R., Nosich A. I. Integral equation analysis of plane wave scattering by coplanar graphene-strip gratings in the THz range // IEEE Trans. on Terahertz Science and Technology. B. 2013. Vol. 3. No. 5. P. 666-674.
Kaliberda M. E., Lytvynenko L. M., Pogarsky S. A. Modeling of graphene planar grating in the THz range by the method of singular integral equations // Freq. B. 2018. Vol. 72. No. 5-6. P. 277–284.
Fel’d Y. N. Electromagnetic wave diffraction by semi-infinite grating // J Commun Technol El+. B. 1958. Vol. 3. P. 882-889.
Capolino F., Albani M. Truncation effects in a semi-infinite periodic array of thin strips: A discrete Wiener-Hopf formulation // Radio Sci. B.2009. Vol. 44. P.1-14.
Nishimoto M., Ikuno H. Analysis of electromagnetic wave diffraction by a semi-infinite strip grating and evaluation of end-effects // Progr. Electromagn. Res. PIER. В. 1999. Vol. 23. Р. 39-58.
Nishimoto M., Ikuno H. Numerical analysis of plane wave diffraction by a semi-infinite grating // T. IEE Japan. В. 2001 Vol. 121-A. Р. 905-910.
Литвиненко Л. М., Резник І. І., Литвиненко Д. Л. Дифракція хвиль на напівнескінченних періодичних структурах // Доповіді АН Української РСР. 1991. № 6. С. 62-66.
Kaliberda M. E., Pogarsky S. A. Operator method in a plane waveguide eigenmodes diffraction problem by finite and semiinfinite system of slots // Int. Conf. on Mathematical Methods in Electromagnetic Theory (MMET), Kharkov, Ukraine. В. 2012. Р. 130-133.
Kaliberda M. E., Lytvynenko L. M., Pogarsky S. A. Diffraction of H-polarized electromagnetic waves by a multi-element planar semi-infinite grating // Telecom. and Radio Eng. В. 2015. Vol. 74. No. 9. P. 348-357.
Kaliberda M. E., Lytvynenko L. M., Pogarsky S. A. Diffraction of the H-polarized plane wave by a finite layered graphene strip grating // International Journal of Microwave and Wireless Technologies. 2018.
Kaliberda M. E., Litvinenko L. N., Pogarskii S. A. Operator Method in the Analysis of Electromagnetic Wave Diffraction by Planar Screens // J. of Commun. Technol. Electron. 2009. Vol.54. No. 9. P. 975-981.
Lytvynenko L. M., Kaliberda M. E., Pogarsky S. A. Solution of Waves Transformation Problem in Axially Symmetric Structures // Freq. 2012. Vol. 66. No. 1-2. P. 17-25.
Гандель Ю. В. Метод парных и сингулярных интегральных уравнений в задачах дифракции на ограниченных решетках // Электромагнитные явления. 1998. Т.1. №2. С.220-232.
Nosich A. A., Gandel Y. V., Magath T., Altintas A. Numerical analysis and synthesis of 2D quasi-optical reflectors and beam waveguides based on an integral-equation approach with Nystrom’s discretization // J. Opt. Soc. Am. A. В. 2007. Vol. 25. P. 2831-2836.
Kaliberda M. E., Lytvynenko L. M., Pogarsky S. A. Method of singular integral equations in diffraction by semi-infinite grating: H -polarization case // Turk. J. of Electrical Eng. & Comp. Sci. В. 2017. Vol. 25. Р. 4496-4509.
Hanson G. W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene // J. Appl. Phys. В. 2008. Vol. 103. P. 064302.
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).