Semantic technology in a survey radar at aircrafts detection and recognition

Authors

  • С.В. Солонская
  • В.В. Жирнов

DOI:

https://doi.org/10.30837/rt.2019.1.196.03

Keywords:

aircraft, semantic technology, hardly noticeable and slow moving air object, detection, recognition, radio-location marks, intelligent system

Abstract

The semantic technology in the surveillance radars is considered when detecting and recognizing a hardly noticeable and slow-moving air object. This technology is based on the methods of artificial intelligence, which is based on the semantic analysis of radar information by forming space-time images using the algebra of finite predicates. Such an approach makes it possible to implement the technology of detecting hardly visible objects in real time when compressing radar information while preserving its completeness and speed of semantic analysis. As a result, the probability of detecting hardly noticeable objects increases from 0.2 to 0.8, which is equivalent to a twofold increase in the radar visibility range.

References

Airland Battle Doctrine / Mark R. Schwartz // Modern war, №6. Jul–Aug 2013. P. 28-31.

Вишневський С.Д., Бейліс Л.В., Климченко В.Й. Потенційні можливості РЛС РТВ з виявлення оперативно-тактичних та тактичних безпілотних літальних апаратів. // Наука і техніка Повітряних Сил Збройних Сил України. 2017. № 2(27). С. 92-98.

Гусь В.И. Особенности трассовой обработки при сопровождении воздушных целей, наблюдаемых под малыми углами места над подстилающей поверхностью // Известия вузов. Радиоэлектроника. 2007. Т. 50. № 1. С. 14–25. Режим доступа: doi:http://dx.doi.org/10.20535/S00213470070100254

Russel S. Artificial intelligence: Amodern approach, 3rd edition / S. Russel, P. Norvig. Pearson Ed., 2010. 1132 p.

Li Jian Radar Signal Processing and Its Applications / Jian Li, R. Hummel, P. Stoica, E. G. Zelnio. Springer, 2013. 279 p. Режим доступа: https://books.google.de/books?id=9K_hBwAAQBAJ&hl=ru&source=gbs_navlinks_s

George F. L. Artificial Intelligence: Structures and Strategies for Complex Problem-Solving. 4ed. Wil-liams, 2005. 864 p.

Chen Kun-Mu Microwave life-detection systems for searching human sub-jects under earthquake rubble or behind barrier / Kun-Mu Chen, Yong Huang, Jianping Zhang, A. Norman and others // IEEE Trans-actions on Biomedical Engineering. 2000. V. 47, Issue 1. Р. 105-114. – DOI: 10.1109/10.817625.

Zhuravlev Yu. I. Analysis of a training sample and classification in one recognition model / Yu. I. Zhuravlev, L. A. Aslanyan, V. V. Ryazanov // Pattern Recognition and Image Analysis: Pleiades Publishing. 2014. V. 24, Issue 3. Р. 347–352. Режим доступа: https://doi.org/10.1134/S1054661814030183.

Солонская С. В. Технология обработки сигналов в интеллектуальной системе обнаружения и распознавания воздушных объектов / С. В. Солонская, В. В. Жирнов // Системи обробки інформації. Харків : ХУПС, 2015. № 11(136). С. 68-72.

Zhirnov V.V., Solonskaya S.V., Zima I.I. Application of wavelet transform for generation of radar virtual images // Telecommunications and Radio Engineering. 2014. V. 73 (17). Р. 1533-1539.|Scopus|0.534|. DOI: 10.1615/TelecomRadEng.v73.i17.20.

Zhirnov V.V., Solonskaya S.V., Zima I.I. Magnetic and electric aspects of genesis of the radar angel clutters and their virtual imaging // Telecommunications and Radio Engineering. 2016. V. 75 (15). Р. 1331-1341.|Scopus|0.534. doi: 10.1615/TelecomRadEng.v75.i15.20.|

Solonskaya S.V., Zhirnov V.V. Intelligent analysis of radar data based on fuzzy transforms / Telecommunications and Radio Engineering. 2018. V. 77 (15). Р. 1321-1329.|Scopus|0.69|

How to Cite

Солонская, С., & Жирнов, В. (2019). Semantic technology in a survey radar at aircrafts detection and recognition. Radiotekhnika, 1(196), 32–37. https://doi.org/10.30837/rt.2019.1.196.03

Issue

Section

Articles