Diffraction of H-polarized wave by planar venetian-blind type grating

Authors

  • М.Е. Калиберда
  • Л.Н. Литвиненко
  • С.А. Погарский

DOI:

https://doi.org/10.30837/rt.2019.2.197.04

Keywords:

graphene, venetian-blind type grating, operator equations

Abstract

Diffraction of the plane H- polarized electromagnetic wave by finite graphene venetian-blind type grating is considered. The operator equations with respect to the spectral functions of the scattered field are presented. The reflection operator of a single graphene strip is obtained with the use of the method of singular integral equations. The dependencies of the total scattering and absorption cross section vs. frequency are represented.

References

Масалов С. А., Рыжак А. В., Сухаревский О. И., Шкиль В. М. Физические основы диапазонных техно-логий типа "Стелс". Санкт-Петербург : Военный инженерно-космический ун-т имени А.Ф. Можайского, 1999. 163 с.

Шестопалов В. П., Литвиненко Л. Н., Масалов С. А., Сологуб В. Г. Дифракция волн на решетках. Харьков : Изд-во ХГУ, 1973. 287 с.

Li X., Lin L., Wu L.-S., Yin W.-Y., Mao J.-F. A Bandpass Graphene Frequency Selective Surface With Tunable Polarization Rotation for THz Applications // IEEE Trans. on Antennas. Propag. 2017. Vol. 65. No. 2. P. 662-672.

Hwang R. B. Rigorous formulation of the scattering of plane waves by 2-D graphene-based gratings: out-of-plane incidence // IEEE Trans. on Antennas Propag. 2014. Vol. 62. No. 9. P. 4736-4745.

D’Aloia A. G., D’Amore M., Sarto M. S. Adaptive broadband radar absorber based on tunable graphene // IEEE Trans. on Antennas Propag. 2016. Vol. 64. No. 6. P. 2527-2531.

Гандель Ю. В. Метод парных и сингулярных интегральных уравнений в задачах дифракции на ограниченных решетках // Электромагнитные явления. 1998. Т.1. №2. С.220-232.

Kaliberda M. E., Lytvynenko L. M., Pogarsky S. A. Modeling of graphene planar grating in the THz range by the method of singular integral equations // Freq. 2018. Vol. 72. No. 5-6. P. 277-284.

Kaliberda M. E., Lytvynenko L. M., Pogarsky S. A. Method of singular integral equations in diffraction by semi-infinite grating: H -polarization case // Turk. J. of Electrical Eng. & Comp. Sci. В. 2017. Vol. 25. Р. 4496-4509.

Koshovy G.I. Electromagnetic wave scattering by pre-fractal structures of cylindrical strips // Telecommunications and Radio Engineering. 2008. Vol. 67. No 14. P. 1225-1238.

Shapoval O. V., Gomez-Diaz J. S., Perruisseau-Carrier J., Mosig J. R., Nosich A. I. Integral equation analysis of plane wave scattering by coplanar graphene-strip gratings in the THz range // IEEE Trans. on Terahertz Science and Technology. 2013. Vol. 3. No. 5. P. 666-674.

Литвиненко Л. М., Резник І. І., Литвиненко Д. Л. Дифракція хвиль на напівнескінченних періодичних структурах // Доповіді АН Української РСР. 1991. № 6. С. 62-66.

Kaliberda M. E., Pogarsky S. A. Operator method in a plane waveguide eigenmodes diffraction problem by finite and semiinfinite system of slots // Int. Conf. on Mathematical Methods in Electromagnetic Theory (MMET), Kharkov, Ukraine. В. 2012. Р. 130-133.

Kaliberda M. E., Lytvynenko L. M., Pogarsky S. A. Diffraction of the H-polarized plane wave by a finite layered graphene strip grating // International Journal of Microwave and Wireless Technologies. 2018.

Kaliberda M. E., Litvinenko L. N., Pogarsky S. A. Diffraction of H0m and E0m Modes by a System of Axially Symmetric Discontinuities in a Coaxial Circuit // Journal of Communications Technology and Electron-ics. 2010. Vol. 55, No. 5. P. 505-511.

Hanson G. W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene // J. Appl. Phys. В. 2008. Vol. 103. P. 064302.

How to Cite

Калиберда, М., Литвиненко, Л., & Погарский, С. (2019). Diffraction of H-polarized wave by planar venetian-blind type grating. Radiotekhnika, 2(197), 38–42. https://doi.org/10.30837/rt.2019.2.197.04

Issue

Section

Articles