Unified cryptographic coprocessor architecture for post-quantum cryptography in 6G network equipment

Authors

DOI:

https://doi.org/10.30837/rt.2025.4.223.13

Keywords:

post-quantum cryptography, ML-KEM, ML-DSA, NTT, FPGA, 6G networks, hardware acceleration, unified architecture, URLLC, lattice-based cryptography

Abstract

The advent of quantum computing poses significant threats to current cryptographic infrastructure protecting 5G and emerging 6G networks. In August 2024, the National Institute of Standards and Technology (NIST) published the first post-quantum cryptography (PQC) standards: ML-KEM (FIPS 203) for key encapsulation and ML-DSA (FIPS 204) for digital signatures. Real-world security protocols such as TLS 1.3 and IPsec require both operations simultaneously, necessitating efficient unified hardware implementations. This paper presents a novel unified cryptographic coprocessor architecture (UniPQC) supporting both ML-KEM and ML-DSA algorithms for deployment in 6G network equipment. The proposed architecture leverages the shared mathematical foundation of both algorithms, specifically the Number Theoretic Transform (NTT), to achieve significant resource optimization. We implement a configurable NTT engine with shared butterfly units capable of processing both 256-coefficient polynomials for ML-KEM and ML-DSA with different moduli (q=3329 and q=8380417). The architecture includes: Unified Polynomial Arithmetic Module (UniPAM), Hash and Sampling Unit (HSU) with Keccak-f[1600] core, Memory Management Unit (MMU) with conflict-free addressing, and Control Configuration Logic (CCL). The architecture is implemented on Xilinx Zynq UltraScale+ FPGA, achieving 285 MHz operating frequency with 4,512 LUTs, 3,245 FFs, 24 DSPs, and 8 BRAMs. Performance evaluation demonstrates that the unified design reduces area-time product by 34% compared to separate implementations while meeting the latency requirements for 6G Ultra-Reliable Low-Latency Communication (URLLC) applications. Complete TLS 1.3 handshake is achieved in under 300 μs, with power consumption of 245 mW for ML-KEM and 312 mW for ML-DSA operations.

References

Shor P. W. Algorithms for quantum computation: discrete logarithms and factoring. // Proc. 35th Annual Sym-posium on Foundations of Computer Science. 1994. Р. 124–134. https://doi.org/10.1109/SFCS.1994.365700

Mosca M. Cybersecurity in an era with quantum computers: Will we be ready? // IEEE Security & Privacy. 2018. Vol.16(5). Р. 38–41. https://doi.org/10.1109/MSP.2018.3761723

NIST. (2024). Module-Lattice-Based Key-Encapsulation Mechanism Standard. FIPS 203. https://csrc.nist.gov/pubs/fips/203/final

GSMA. (2024). Post Quantum Telco Network Impact Assessment. White Paper. https://www.gsma.com/security/pqtn/

Avanzi R. et al. (2022). CRYSTALS-Kyber Algorithm Specifications and Supporting Documentation. NIST PQC Submission.

Ducas L. et al. (2022). CRYSTALS-Dilithium Algorithm Specifications and Supporting Documentation. NIST PQC Submission.

Longa P., & Naehrig M. Speeding up the Number Theoretic Transform for Faster Ideal Lattice-Based Cryptog-raphy // CANS 2016, LNCS. Vol. 10052. Р. 124–139. https://doi.org/10.1007/978-3-319-48965-0_8

Kundi D. E. S., Mera J. M. B., Strub P.-Y., & Hutter M. (2024). High-Performance NTT Hardware Accelerator to Support ML-KEM and ML-DSA // Proc. ASHES '24. 2024. Р. 100–105. https://doi.org/10.1145/3689936.3694706

Mandal S., & Roy D. B. KiD: A Hardware Design Framework Targeting Unified NTT Multiplication for CRYSTALS-Kyber and CRYSTALS-Dilithium on FPGA // Proc. VLSID. 2024. Р. 455–460. https://doi.org/10.1109/VLSID60093.2024.00089

Aikata S. et al. KaLi: A crypto coprocessor for Kyber and Dilithium with side-channel protection // IACR TCHES. 2024. Vol. 1. Р. 291–325. https://doi.org/10.46586/tches.v2024.i1.291-325

ITU-R. (2023). Framework and overall objectives of the future development of IMT for 2030 and beyond. Recommendation ITU-R M.2160.

NIST. (2024). Module-Lattice-Based Digital Signature Standard. FIPS 204. https://csrc.nist.gov/pubs/fips/204/final

Truong H. T. et al. High-performance Unified Hardware Architecture for ML-DSA and ML-KEM PQC Stan-dards. IEEE Access. 2025.https://doi.org/10.1109/ACCESS.2025.3628733

3GPP. (2024). Study on quantum-safe security in the 5G System (5GS). TR 33.848, Release 19.

Di Matteo S., Sarno I., & Saponara S. CRYPHTOR: A Memory-Unified NTT-Based Hardware Accelerator for Post-Quantum CRYSTALS Algorithms // IEEE Access. 2024. Vol. 12, Р.25501–25511. https://doi.org/10.1109/ACCESS.2024.3367230

Khalimov G., Kotukh Y., Kolisnyk M., & Khalimova S., Sievierinov O. LINE: Cryptosystem based on linear equations for logarithmic signatures // Cryptology ePrint Archive: Report 2024/697. 2024. https://ia.cr/2024/697

Khalimov G., Kotukh Y., Kolisnyk M., Khalimova S., Sievierinov O., & Korobchynskyi M. Digital signature scheme based on linear equations // In K. Arai (Ed.). Advances in Information and Communication. FICC 2025. Lec-ture Notes in Networks and Systems. 2025. Vol. 1285. Springer. https://doi.org/10.1007/978-3-031-84460-7_46

Khalimov G., Kotukh Y., Kolisnyk M., Khalimova S., Sievierinov O., & Volkov O. SIGNLINE: Digital sig-nature scheme based on linear equations cryptosystem // 2024 4th International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). 2024. Р. 1–9. IEEE. https://doi.org/10.1109/ICECCME62383.2024.10796704

Kotukh Y., Severinov E., Vlasov O., Tenytska A., & Zarudna E. Some results of development of crypto-graphic transformations schemes using non-abelian groups. Radiotekhnika. 2021. №204. Р. 66–72.

Kotukh Y., & Khalimov G. Hard problems for non-abelian group cryptography // Fifth International Scientific and Technical Conference “Computer and Information Systems and Technologies”. 2021. https://doi.org/10.30837/csitic52021232176

Kotukh, Y., Khalimov, G., Dzhura, I., & Hivrenko, H. (2025). Application of the LINE encryption scheme in the key encapsulation mechanism for the authentication protocol in 5G networks. Radiotekhnika, 219, 36–45. https://doi.org/10.30837/rt.2024.4.219.04

Kotukh Y., Khalimov G., Korobchynskyi M., Rudenko M., Liubchak V., Matsyuk S., & Chashchyn M. Re-search horizons in group cryptography in the context of post-quantum cryptosystems development // Radiotekhnika. 2024. №216. Р. 62–72. https://doi.org/10.30837/rt.2024.1.216.05

Kotukh Y., & Khalimov G. Towards practical cryptoanalysis of systems based on word problems and loga-rithmic signatures // Information security: Problems and prospects. 2022. Р. 55–60.

Khalimov G., & Kotukh Y. (2025). Cryptographic strengthening of MST3 cryptosystem via automorphism group of Suzuki function fields. arXiv preprint arXiv:2504.07318. https://arxiv.org/abs/2504.07318

Khalimov, G., & Kotukh, Y. (2025). MST3 encryption improvement with three-parameter group of Hermitian function field. arXiv preprint arXiv:2504.15391. https://arxiv.org/abs/2504.15391

Khalimov G., & Kotukh Y. (2025). Advanced MST3 encryption scheme based on generalized Suzuki 2-groups. arXiv preprint arXiv:2504.11804. https://arxiv.org/abs/2504.11804

Khalimov G., & Kotukh Y. (2025). Improved MST3 encryption scheme based on small Ree groups. arXiv preprint arXiv:2504.10947. https://arxiv.org/abs/2504.10947

Khalimov G., Kotukh Y., & Khalimova S. Encryption scheme based on the automorphism group of the Ree function field // IEEE 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). 2020. Р. 1–8.

Khalimov G., Didmanidze I., Sievierinov O., Kotukh Y., & Shonia O. Encryption scheme based on the auto-morphism group of the Suzuki function field // IEEE International Conference on Problems of Infocommunications, Science and Technology (PIC S&T 2020). 2020. Р. 383–387.

Khalimov G., Kotukh Y., & Khalimova S. Improved encryption scheme based on the automorphism group of the Ree function field // IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). 2021.

Khalimov G., Kotukh Y., & Khalimova S. (2019). MST3 cryptosystem based on the automorphism group of the Hermitian function field // IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T 2019). 2019. Р. 865–868.

Khalimov G., Kotukh Y., Didmanidze I., Sievierinov O., Khalimova S., & Vlasov A. Towards three-parameter group encryption scheme for MST3 cryptosystem improvement // IEEE 5th World Conference on Smart Trends in Sys-tems Security and Sustainability (WorldS4). 2021. Р. 204–211.

Khalimov G., Kotukh Y., Didmanidze I., & Khalimova S. Encryption scheme based on small Ree groups // Proceedings of the 2021 7th International Conference on Computer Technology Applications (ICCTA ’21). 2021. Р. 33–37.

Published

2025-12-24

How to Cite

Kotukh, Y. (2025). Unified cryptographic coprocessor architecture for post-quantum cryptography in 6G network equipment. Radiotekhnika, (223), 121–125. https://doi.org/10.30837/rt.2025.4.223.13

Issue

Section

Articles