Using deep learning methods for visualization and detection of malware

Authors

DOI:

https://doi.org/10.30837/rt.2025.4.223.09

Keywords:

deep learning, convolutional neural network, malware, visualization, PE-file, transfer learning, cybersecurity

Abstract

The purpose of the article is to conduct a comparative analysis of the effectiveness of common convolutional neural network architectures for the task of classifying malware, which was previously converted into graphic images. The approach is based on converting executable PE-files into grayscale images. The transfer learning method is applied to classify these images. The paper provides an experimental comparison of seven architectures (XceptionNet, DenseNet169, EfficientNetB0, MobileNetV2, InceptionV3, ResNet50V2, and VGG16) based on Accuracy, Precision, Recall, and F1-score metrics to determine the most effective and computationally balanced model for threat analysis.

The article will be useful to specialists in the field of cybersecurity and machine learning who are involved in the development of intelligent systems for detecting "zero-day" and polymorphic threats.

References

Brosolo M. et al. Security through the Eyes of AI: How Visualization is Shaping Malware Detection. (2025). arXiv:2505.07574v4. Available: https://doi.org/10.48550/arXiv.2505.07574.

Shahnawaz M. et al. Dynamic Malware Classification of Windows PE Files using CNNs and Greyscale Images Derived from Runtime API Call Argument Conversion. arXiv:2505.24231v1. (2025). Available: https://doi.org/10.48550/arXiv.2505.24231.

Bensaoud A. et al. A Survey of Malware Detection Using Deep Learning. (2024). arXiv:2407.19153v1. Available: https://doi.org/10.48550/arXiv.2407.19153.

Ashawa M., Owoh N., Hosseinzadeh S., & Osamor J. Enhanced Image-Based Malware Classification Using Transformer-Based Convolutional Neural Networks (CNNs) // Electronics. 2024. Vol. 13(20). P. 4081. Available: https://doi.org/10.3390/electronics13204081.

Kim H. & Kim M. Malware Detection and Classification System Based on CNN-BiLSTM // Electronics. 2024. Vol. 13. P. 2539. Available: https://doi.org/10.3390/electronics13132539.

Huang G., Liu Z., Van Der Maaten L. and Weinberger K. Q. Densely Connected Convolutional Networks // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017. P. 2261–2269. Available: doi: 10.1109/CVPR.2017.243.

Simonyan K., & Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition // Proceedings of the 3rd International Conference on Learning Representations (ICLR). (2015). Available: https://doi.org/10.48550/arXiv.1409.1556.

He K., Zhang X., Ren S., & Sun J. Identity Mappings in Deep Residual Networks // Proceedings of the European Conference on Computer Vision (ECCV). (2016). Available: https://doi.org/10.48550/arXiv.1603.05027.

Chollet F. Xception: Deep Learning with Depthwise Separable Convolutions // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA. 2017. P. 1800–1807. [Online]. Available: doi: 10.1109/CVPR.2017.195.

MaleVis Dataset Home Page. Режим доступу: https://web.cs.hacettepe.edu.tr/~selman/malevis/.

GitHub – ESultanik/bin2png: A simple cross-platform script for encoding any binary file into a lossless PNG. GitHub. Режим доступу: https://github.com/ESultanik/bin2png.

Федюшин О. І., Хижняк К. М. CNN та їх використання для класифікації MALWARE // Матеріали Одинадцятої міжнар. наук.-техн. конф. «Проблеми інформатизації», Харків, 16–17 листопада 2023 р. С. 49.

Published

2025-12-24

How to Cite

Fediushyn, O., Shulik, P., Prosolov, V., Viukhin, D., & Chechui, O. (2025). Using deep learning methods for visualization and detection of malware. Radiotekhnika, (223), 75–84. https://doi.org/10.30837/rt.2025.4.223.09

Issue

Section

Articles