Design of ultraviolet disinfection with optimization of irradiation dosage by means of measurement and control of uv radiation parameters

Authors

DOI:

https://doi.org/10.30837/rt.2025.3.222.23

Keywords:

beekeeping, disinfection, ultraviolet radiation, UV-C, bee diseases, fungal infections, environmentally friendly technologies

Abstract

Modern beekeeping faces complex threats, among which the pesticide poisoning, spread of diseases and parasites, climate change, decrease in the feed base and organizational shortcomings in the apiary management play a key role. Mass losses of bee colonies in Ukraine, reaching 30–50% per year, create a serious environmental and agricultural problem. In this context, the search for safe and effective disinfection methods that can replace chemicals is relevant.

The aim of the study is to assess the effectiveness of ultraviolet (UV-C) radiation in the range of 210–280 nm for combating fungal and viral infections of the surface of hives. The experiments conducted showed that the most effective is radiation with a wavelength of 254 nm, which provides up to 96.8% disinfection of colonies of microorganisms.

The developed experimental installation based on a bactericidal UV-irradiator with autonomous power supply demonstrated high efficiency, cost-effectiveness and environmental safety in comparison with traditional methods (steam, acid and fire treatment). The results confirm the feasibility of using the UV technologies in beekeeping as a promising direction for disease prevention and preservation of bee colonies.

References

Агроновини. Пчелосемей в Украине стало меньше почти на 6 % / AgroPortal.ua. AgroPortal.ua. URL: https://agroportal.ua/ru/news/zhivotnovodstvo/bdzholosimey-v-ukrajini-pomenshalo-mayzhe-na-6.

Interfax-Ukraine. Смертність бджіл в Україні у 2024 р. становила 20–25 %, а втрати галузі через війну сягають 30 % / Інститут бджільництва. Інтерфакс-Україна.

URL: https://interfax.com.ua/news/general/1038912.html.

Fedoriak M. RESULTS OF MONITORING OF HONEY BEE COLONY LOSSES IN UKRAINE AFTER THE WINTER OF THE FIRST YEAR OF THE WAR (2021–2022) // Biolohichni systemy. 2024. Vol. 16, no. 3. URL: https://doi.org/10.31861/biosystems2024.03.300

Санін Ю. К. Методи та засоби впливу УФ випромінюванням для знезараження варроатозу бджіл // Thesis. 2020. URL: http://repository.kpi.kharkov.ua/handle/KhPI-Press/48427.

Центр громадського здоров’я України | МОЗ.

URL: https://phc.org.ua/sites/default/files/uploads/documents/files/32354b7fa7425199a4b4c67ce5a89f53.pdf

Semenov A., Semenova K. Ultraviolet disinfection of water in recirculating aquaculture system: a case study at sturgeon caviar fish farm // Acta agriculturae Slovenica. 2022. Vol. 118, no. 3. P. 1. URL: https://doi.org/10.14720/aas.2022.118.3.2488.

Blau K., Gallert C. Efficacy of UV-C 254 nm Light and a Sporicidal Surface Disinfectant in Inactivating Spores from Clostridioides difficile Ribotypes In Vitro Pathogens. 2024. Vol. 13, no. 11. P. 965. URL: https://doi.org/10.3390/pathogens13110965.

Chen H., Moraru C. I., Protasenko V. V. Maximizing the disinfection effectiveness of 254 nm UV-C light with a special design unit: simulation and experimental approaches // Frontiers in Food Science and Technology. 2023. Vol. 3. URL: https://doi.org/10.3389/frfst.2023.1223829 .

Ultraviolet germicidal irradiation disinfection of Stachybotrys chartarum / C. F. Green et al // Canadian Journal of Microbiology. 2005. Vol. 51, no. 9. P. 801–804. URL: https://doi.org/10.1139/w05-061.

Glover K. K., Nunayon S., Zhong L. Ultraviolet germicidal irradiation: Advances in viral inactivation and vaccine development // Indoor Environments. 2025. P. 100099. URL: https://doi.org/10.1016/j.indenv.2025.100099.

Published

2025-09-18

How to Cite

Rudenko, A., Mardzyavko, V., Vakhonina, L., & Kundenko, M. . (2025). Design of ultraviolet disinfection with optimization of irradiation dosage by means of measurement and control of uv radiation parameters. Radiotekhnika, (222), 228–234. https://doi.org/10.30837/rt.2025.3.222.23

Issue

Section

Articles