Research on drone recognition based on their acoustic emission using fully connected neural networks

Authors

  • O.V. Zubkov Харківський національний університет радіоелектроніки, Ukraine https://orcid.org/0000-0002-8528-6540
  • N.V. Boiko Харківський національний університет радіоелектроніки, Ukraine
  • T.S. Machonis Харківський національний університет радіоелектроніки, Ukraine

DOI:

https://doi.org/10.30837/rt.2025.3.222.12

Keywords:

drone, recognition, fully connected neural network, cepstral coefficients, acoustic radiation, architecture

Abstract

The relevance of the research on recognizing the self-acoustic emissions of drones using fully connected neural networks and cepstral coefficients has been substantiated. A dataset of acoustic recordings has been created, including self-emissions of various drone models, background sounds, and seven types of sound sources with spectral characteristics similar to drone acoustic emissions. The optimal number of cepstral coefficients has been identified for further recognition by fully connected neural networks in terms of maximizing the probability of correct recognition and minimizing misclassification. The optimal neural network architecture has been determined to ensure the highest probability of correct recognition. The requirements for a microprocessor-based hardware platform for recognizing drone self-acoustic emissions have been calculated.

References

Agapiou A. Drones in Construction: A Comparative International Review of the Legal and Regulatory Landscape // Management Procurement and Law. 2020. Vol. 174, No.3. P.1–8. DOI:10.1680/jmapl.19.00041

Pyrgies J. The UAVs threat to airport security: risk analysis and mitigation // Journal of Airline and Airport Management. 2019. Terrassa. Vol. 9, Iss.2. P.63–96.

Mowafaq SA, Muhyeeddin A, Al-Batah MS. AI in the Sky: Developing Real-Time UAV Recognition Systems to Enhance Military Security // Data and Metadata. Nazarre. 2024. Vol. 3. P.1–19. https://doi.org/10.56294/dm2024.417

Aouladhadj D., Kpre E., Deniau V., Kharchouf A., Gransart C., Gaquière C. Drone Detection andTracking Us-ing RF IdentificationSignals // Sensors. Basel. 2023. Vol. 23. P.1–24. https://doi.org/10.3390/s23177650

Yousaf J., Zia H., Alhalabi M., Yaghi M., Basmaji T., Shehhi E.A., Gad A., Alkhedher M., Ghazal M. Drone and Controller Detection and Localization: Trends and Challenges// Appl. Sci. Basel. 2022. Vol.12, Iss.24, P.1–22. https://doi.org/10.3390/app122412612

Zubkov O.V., Sheiko S.O., Oleynikov V.M., Kartashov V.M., Babkin S.I. Investigation Of The Yolov5 Algorithm Efficiency For Drone Recognization // Telecommunications and Radio Engineering. Danbury. 2024. Vol.83, Iss.1. P. 65–79. DOI: 10.1615/TelecomRadEng.2023048987

Oleynikov V., Zubkov O., Kartashov V., Korytsev I., Babkin S., Sheiko S. Investigation of the efficiency of detection and recognition of small-sized unmanned aerial vehicles by their acoustic radiation. Radiotekhnika. 2018. Vol.4, No.195. P.209–217. https://doi.org/10.30837/rt.2018.4.195.21

Paszkowski W., Gola A., Świć A. Acoustic-Based Drone Detection Using Neural Networks – A Comprehen-sive Analysis// Advances in Science and Technology Research Journal. Lublin. 2024. Vol.18, Iss.1. P.36–47. https://doi.org/10.12913/22998624/175863

Tejera-Berengue D., Zhu-Zhou F., Utrilla-Manso M., Gil-Pita R., Rosa-Zurera M. Analysisof Distance and EnvironmentalImpact on UAV Acoustic Detection // Electronics. Basel. 2024. Vol. 13.

https://doi.org/10.3390/electronics13030643

Othman E., Cibilić I., Poslončec-Petrić V., Saadallah D. Investigating Noise Mapping in Cities to Associate Noise Levels with Sources of Noise Using Crowdsourcing Applications// Urban Sci. 2024. Vol.8, Iss.1. https://doi.org/10.3390/urbansci8010013

Dombrovschi M., Deaconu M., Cristea L., Frigioescu T.F., Cican G., Badea ., Totu G. Acoustic Analysis of a Hybrid Propulsion System for Drone Applications// Acoustics. Basel. 2024. Vol. 6, Iss.3. P. 698–712. https://doi.org/10.3390/acoustics6030038

Islam M., Haque M., Islam S., Mia Z.A., Rahman M. DCNN-LSTM Based Audio ClassificationCombining Multiple Feature Engineeringand Data Augmentation Techniques Intelligent // Computing & Optimization Springer. Cham. 2021. Vol. 371. P.227–236. DOI:10.1007/978-3-030-93247-3_2 3

Wei N., Gu J.X., Gu F., Chen Z., Li G., Wang T., Ball A.D. An Investigation into the Acoustic Emissions of Internal Combustion Engines with Modelling and Wavelet Package Analysis for Monitoring Lubrication Conditions // Energies. Basel. 2019. Vol.12, Iss.4. P. 1–14. https://doi.org/10.3390/en12040640

Zrar K.A., Abdulbasit K.A. Mel Frequency Cepstral Coefficient and its Applications: A Review // IEEE Ac-cess. Piscataway. 2022. Vol.10. P.122136–122158. DOI:10.1109/ACCESS.2022.3223444

Sithara A., Abraham T., Mathew D. Study of MFCC and IHC Feature Extraction Methods With Probabilistic Acoustic Models for Speaker Biometric Applications // Procedia Computer Science. Amsterdam. 2018. Vol. 143.P. 267–276. DOI:10.1016/j.procs.2018.10.395

Fazal M.A., Baig M.A., Manj W.A., Faraz Z., Mallah G.A. Implementation of Deep Learning for Acoustic Classification // Journal of Xidian University. Christchurch. 2023. Vol. 17, Iss. 8. P.1653–1673. DOI:10.37896/jxu17.8/138

Pham L., Ngo D., Salovic D.c, Jalali A., Schindler A., Nguyen P. X., Tran K., Vu H. Lightweight deep neural networks for acoustic scene classification and an effective visualization for presenting sound scene contexts // Applied Acoustics. Basel. 2023. Vol. 211. P.723–731. DOI:10.1016/j.apacoust.2023.109489

Jung H.K., Choi G.S. Improved YOLOv5: Efficient Object Detection Using Drone Images under Various Conditions // Appl. Sci. Basel. 2022. Vol. 12. Р.1–16. DOI: 10.3390/app12147255

Pang B., Nijkamp E., Nian Y.W. Deep Learning With TensorFlow: A Review // Journal of Educational and Behavioral Statistics. 2019. Vol. 45, Iss. 2. P.415–421. https://doi.org/10.3102/107699861987276

Soujanya B., Sitamahalakshmi T. Optimization with ADAM and RMSprop in Convolution neural Network (CNN): A Case study for Telugu Handwritten Characters // International Journal of Emerging Trends in Engineering Research. Pawan. 2020. Vol. 8. No. 9. P.5116–5121.

Published

2025-09-18

How to Cite

Zubkov, O., Boiko, N., & Machonis, T. (2025). Research on drone recognition based on their acoustic emission using fully connected neural networks. Radiotekhnika, (222), 136–144. https://doi.org/10.30837/rt.2025.3.222.12

Issue

Section

Articles