Features and development prospects of the radio receiving system of the incoherent scatter radars of the Institute of Ionosphere, National Technical University “Kharkiv Polytechnic Institute”
DOI:
https://doi.org/10.30837/rt.2025.3.222.10Keywords:
incoherent scatter technique, radio receiving systems, radar signals, sounding modesAbstract
The paper presents the current state of a multichannel radio receiving system developed, implemented, and used for many years as part of the incoherent scatter (IS) radars of the Institute of Ionosphere and is constantly being improved. The technical features and structure of this system, which provides high-precision measurements of ionospheric parameters over a wide altitude range, are described. The requirements for sensitivity, stability, and interference immunity considered of the system under conditions of weak IS signal reception are analyzed. The superheterodyne architecture with triple frequency conversion is detailed, along with principles of signal selection and synchronous detection, and the extraction of the quadrature components of the received signal for subsequent computation of IS signal correlation functions. The implementation of Doppler measurements of the velocity of motion of ionospheric plasma and objects in geospace is based on the coherent structure of the radar complex and the coordinated synchronization of the transmitting and receiving paths.
Modes of operation using composite sounding signals are presented, as well as features of receiving and selecting ionospherically scattered elements of these signals for the study of both the lower and upper ionosphere with sufficiently high altitude and temporal resolution. The mode of simultaneous sounding in the vertical and oblique directions has been implemented to enable three-dimensional analysis of the properties and dynamics of the ionospheric plasma.
The subsystem for receiving, digitizing, and processing signals at the intermediate frequency has been integrated into the radar, allowing for improved accuracy in measuring IS signal parameters by eliminating the influence of a number of instrumental factors and employing digital bandpass filters and processing algorithms adapted to signals corresponding to specific heliogeophysical conditions and investigation altitudes.
The hardware implementation of a programmable geospace monitoring radio system based on SDR (Software Defined Radio) technology is proposed, enabling both active and passive observation modes and significantly expanding the functionality of the radiophysical equipment of the observatory of the Institute of Ionosphere for ionospheric research and space environment monitoring.
The presented technical solutions meet the requirements of modern geospace monitoring systems and are useful for ionospheric research and the observation of artificial space objects, particularly in the context of the growing importance of space weather forecasting and space debris issues.
References
Xue D., Yang J., Liu Z. Potential impact of GNSS positioning errors on the satellite‐navigation‐based air traffic management // Space Weather. 2022. Vol. 20, is. 7, e2022SW003144. https://doi.org/10.1029/2022SW003144.
Reznychenko M. O., Kotov D. V., Richards P. G., Bogomaz O. V., Reznychenko A. I., Goncharenko L. P., et al. The thermosphere was poorly predictable not only during but also before and after the Starlink Storm on 3–4 February 2022 // Geophys. Res. Lett. 2025. Vol. 52. e2024GL112620. https://doi.org/10.1029/2024GL112620.
Evans J. V. Theory and practice of ionosphere study by Thomson scatter radar // Proceedings of the IEEE. Vol. 57, no 4. 1969. P. 496–530. https://doi.org/10.1109/PROC.1969.7005.
Sato T., Ito A., Oliver W. L., Fukao S., Tsuda T., Kato S., Kimura I. Ionospheric incoherent scatter measure-ments with the middle and upper ionosphere radar. Techniques and capability // Radio Sci. 1989. Vol. 24. P. 85–98. https://doi.org/10.1029/RS024i001p00085.
Holt J. M., Erickson P. J., Gorczyca A. M., Grydeland T. MIDAS W: a workstation-based incoherent scatter radar data acquisition system // Ann. Geophys. 2000. Vol. 18, no. 9. P. 1231–1241. https://doi.org/10.1007/s00585-000-1231-3.
Woodman R. F., Farley D. T., Balsley B. B., Milla M. A. The early history of the Jicamarca radio observatory and the incoherent scatter technique // Hist. Geo Space. Sci. 2019. Vol. 10. P. 245–266. https://doi.org/10.5194/hgss-10-245-2019.
Yue X., Wan W., Ning B., et al. Development of the Sanya incoherent scatter radar and preliminary results // J. Geophys. Res.: Space Physics. 2022. Vol. 127, e2022JA030451. https://doi.org/10.1029/2022JA030451.
Lehtinen M., Markkanen J., Väänänen A., Huuskonen A., Damtie B., Nygrén T., Rahkola J. A new incoherent scatter technique in the EISCAT Svalbard Radar // Radio Sci. 2002. Vol. 37, no. 4. https://doi.org/10.1029/2001RS002518.
Wannberg U. G. et al. EISCAT_3D: A Next-Generation European Radar System for Upper-Atmosphere and Geospace Research // The Radio Science Bulletin. 2010. No 332. P 75–88.
Ding Z., Wu J., Xu Z., Xu B., Dai L. The Qujing incoherent scatter radar: system description and preliminary measurements // Earth Planets Space. 2018. Vol. 70, no. 1. https://doi.org/10.1186/s40623-018-0859-8.
Grydeland T., Lind F. D., Erickson P. J., Holt J. M. Software Radar signal processing // Ann. Geophys. 2005. Vol. 23, no. 1., P. 109–121. https://doi.org/10.5194/angeo-23-109-2005.
Damtie B. New incoherent scatter radar measurement techniques and data analysis methods // Department of Physical Sciences, University of Oulu, Finland, 2004, Report №29.
Emelyanov L. Ya., Zhivolup T. G. History of the development of IS radars and founding of the Institute of Ionosphere in Ukraine // Hist. Geo Space. Sci. 2013. Vol. 4. P. 7–17. https://doi.org/10.5194/hgss-4-7-2013.
Domnin I. F., Chepurnyy Ya. M., Emelyanov L. Ya., Chernyaev S. V., Kononenko A. F., Kotov D. V., Bogomaz O. V., Iskra D. A. Kharkiv Incoherent Scatter Facility // Bulletin of the National Technical University “Kharkiv Politechnic Institute”: scientific papers. Issue: Radiophysics and ionosphere. Kharkiv : NTU “KhPI”. 2014. No. 47 (1089). P. 28–42. http://nbuv.gov.ua/UJRN/vcpiri_2014_47_7.
Stone M. L.; Banner G. P. Radars for the Detection and Tracking of Ballistic Missiles, Satellites, and Planets // Linc. Lab. J. 2000. Vol. 12, no. 2. P. 217–244. https://archive.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2detectsatellitiesplanets.pdf.
Boley A. C., Wright E., Lawler S., Hickson P., Balam, D. Plaskett 1.8 m Observations of Starlink Satellites // The Astronomical Journal. 2022. Vol. 163 (5). P. 199. https://doi.org/10.48550/arXiv.2109.12494.
Graham M. J., Kulkarni S. R., Bellm E. C., et al. The zwicky transient facility: science objectives // Publica-tions of the Astronomical Society of the Pacific. 2019. 131:078001 (23 pages). https://doi.org/10.1088/1538-3873/ab006c.
Parham J. B., Li J., Dickson M., Ginet G., Erickson P. J., Lind F. D. Debris plasma density perturbations as seen through a modern collective Thomson scatter radar processing chain // 2024 International Conference on Electro-magnetics in Advanced Applications (ICEAA), 02–06 September 2024.
https://doi.org/10.1109/ICEAA61917.2024.10701844.
Stamm J., Vierinen J., Gustavsson B., Spicher A. A technique for volumetric incoherent scatter radar analysis // Ann. Geophys. 2023. Vol. 41, is. 1. P. 55–67. https://doi.org/10.5194/angeo-41-55-2023.
Skolnik M. I. Introduction to Radar Systems. New York, McGraw-Hill, 3rd Edition, 2001.
Zakharenko V., Konovalenko A., Zarka P. et al. Digital receivers for low-frequency radio telescopes UTR-2, URAN, GURT // Journal of Astronomical Instrumentation. 2016. Vol. 5, no. 4. 1641010 (19 pages). https://doi.org/10.1142/S22511717164101051641010-1.
Thompson A. R., Moran J. M., Swenson Jr. G. W. Interferometry and Synthesis in Radio Astronomy. Cham.: Springer Nature. 2017. https://doi.org/10.1007/978-3-319-44431-4.
Bostan S. M., Urbina J., Mathews J. D., Bilén S. G., Breakall J. K. An HF software‐defined radar to study the ionosphere // Radio Science. 2019. Vol. 54. P. 839–849. https://doi.org/10.1029/2018RS006773.
Kalita B. R., Nath S. J., Bhuyan P. K., Khandare A., Kulkarni A. SAMEERDU—digital ionosonde: Brief sys-tem description and initial results from a low-latitude location Dibrugarh // Radio Science. 2019. Vol. 54. P. 1142–1155. https://doi.org/10.1029/2019RS006813.
Barona Mendoza J. J., Quiroga Ruiz C. F., Pinedo Jaramillo C. R. Implementation of an electronic ionosonde to monitor the Earth’s ionosphere via a projected column through USRP // Sensors. 2017. Vol. 17, no. 5. 946 p. https://doi.org/10.3390/s17050946.
Rejfek L., Kouba D., Mošna Z., Knížová P. K., Tran P. T., Dong C. S. T. Passive ionospheric radar builds with USRP N210 // Journal of Electrical Engineering. 2019. Vol. 70, is. 2. P. 159–164. https://doi.org/10.2478/jee-2019-0023.
Li Y., Yuan K., Yao M., Deng X. The prototype incoherent scatter radar system of Nanchang University // IEEE Geoscience and Remote Sensing Letters. 2020. P. 1184–1188. https://doi.org/10.1109/LGRS.2020.2994082.
Thayaparan T., Dupont D., Ibrahim Y., Riddolls R. High-frequency ionospheric monitoring system for Over-the-Horizon radar in Canada // IEEE Transactions on Geoscience and Remote Sensing. 2019. Vol. 57, is. 9. P. 6372–6384. https://doi.org/10.1109/TGRS.2019.2905757.
Holdsworth D. A., Spargo A. J., Reid I. M., Adami C. Low Earth Orbit object observations using the Buck-land Park VHF radar // Radio Sci. 2020. Vol. 55, is. 2. e2019RS006873. https://doi.org/10.1029/2019RS006873.
Kenington P. B. RF and baseband techniques for software defined radio. Artech House Mobile Communicat. 2005. 332 р. https://picture.iczhiku.com/resource/eetop/WHIWPiloyEJraxXB.pdf.
Farley D. T. Faraday rotation measurements using incoherent scatter // Radio Sci. 1969. Vol. 4, no 2. P. 143–152. https://doi.org/10.1029/RS004i002p00143.
Skvortsov T. A., Yemelyanov L. Ya., Fisun A.V. Radar measurements of geomagnetic field in the ionosphere // Telecommunications and Radio Engineering. 2015. Vol. 74, No 10. P. 921–931. https://doi.org/10.1615/TelecomRadEng.v74.i10.80.
Emelyanov L., Chepurnyy Y., Bogomaz O. Simultaneous sounding of the ionosphere in the vertical and oblique directions using incoherent scatter radar // 2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO). 2018. P. 458–463. https://doi.org/10.1109/ELNANO.2018.8477456.
Yemelyanov L. Ya. Development of principles and instrumentation for generation of test and control signals of the incoherent scatter radar // Telecommunications and Radio Engineering. 2017. Vol. 76, is. 14. P. 1259–1271. https://doi.org/10.1615/TelecomRadEng.v76.i14.50.
Kraus J. D. Radio Astronomy, 2nd ed. Cygnus-Quasar Books, Powell, OH. 1986.
Emelyanov L., Miroshnikov A. Development of methodological, hardware, and software of the incoherent scatter radar of Institute of Ionosphere (Kharkiv, Ukraine) // International Journal of Electronics and Telecommunica-tions. 2023. Vol. 69, no. 3. P. 579–586. https://doi.org/10.24425/ijet.2023.146510.
Emelyanov L., Rogozhkin E., Podyachiy Y. Method for sampling narrowband radio signals with known center frequency of spectrum // 2024 IEEE 42nd International Conference on Electronics and Nanotechnology (ELNANO). May 13–16, 2024, Kyiv, Ukraine, Conference Proceedings. 2024. P. 544–548. https://doi.org/10.1109/ELNANO63394.2024.10756842.
Bogomaz O., Barabash V., Iskra D. Some aspects of developing a multipurpose radio system for monitoring the geospace // Advanced Applied Energy and Information Technologies 2021. Proceedings of the International Con-ference (Ternopil, 15–17 of December 2021.) Ternopil : TNTU, 2021. P. 114–119. https://elartu.tntu.edu.ua/bitstream/lib/36934/2/ICAAEIT_2021_Bogomaz_O-Some_aspects_of_developing_114-119.pdf.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).


