Development of a typical infrastructure for a quantum random number generator web service
DOI:
https://doi.org/10.30837/rt.2025.3.222.06Keywords:
quantum entropy source, cybersecurity, extractor, deterministic random bit generator, min-entropy, quantum random number generator, web-service QRNGAbstract
Quantum Random Number Generators (QRNGs) provide physically unpredictable entropy essential for cryptography, modeling, and scientific research. Local generation is preferred for the highest level of security, as it eliminates the risks associated with transmitting data over a network. At the same time, public QRNG web services accessible via the API serve as a valuable tool in cases where dedicated hardware is unavailable, enabling rapid integration into software prototypes, statistical testing, large-scale simulations, and educational projects. Combining local and remote sources makes it possible to optimize the balance between security, accessibility, and performance.
This article helps to develop and justify a typical QRNG web service infrastructure, which includes functional components, security requirements, access interfaces (API), methods for quality control of randomness, and recommendations for scalability. The proposed infrastructure is intended to serve as a foundation for creating interoperable, secure, and efficient web services of quantum entropy sources.
References
Ma X., Yuan X., Cao Z., Qi B., and Zhang Z. Quantum random number generation // Quantum Information. 2016. Vol. 2. Available: https://www.nature.com/articles/npjqi201621 (Nature)
Mannalath V., Mishra S., Pathak A. A Comprehensive Review of Quantum Random Number Generators. arXiv:2203.00261, 2022. Available: https://arxiv.org/abs/2203.00261 (arXiv)
Morhul D., Nariezhnii O., & Hrinenko T. Threat and adversary models for QRNG web services // Radio-tekhnika. 2025. No 221. P. 31–38. https://doi.org/10.30837/rt.2025.2.221.04
Turan M. S. et al. Recommendation for the Entropy Sources Used for Random Bit Generation, NIST SP 800-90B (Final), 2018. DOI: 10.6028/NIST.SP.800-90B. PDF: https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-90b.pdf (NIST Publications)
Ma X. et al. Postprocessing for quantum random-number generators: entropy evaluation and randomness ex-traction // Phys. Rev. A. 2013. Vol. 87, 062327. DOI: 10.1103/PhysRevA.87.062327 (Physical Review)
Chouhan S. et al. FPGA-based Toeplitz Strong Extractor for Quantum Random Number Generators. arXiv:2505.02868, 2025. Available: https://arxiv.org/abs/2505.02868 (arXiv)
Rescorla E. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446, Aug. 2018. Available: https://datatracker.ietf.org/doc/html/rfc8446 (IETF Datatracker)
Temoshok D. et al. Digital Identity Guidelines: Authentication and Authenticator Management NIST SP 800-63B-4, 2025. PDF: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63b-4.pdf (NIST Publications)
Hardt D. The OAuth 2.0 Authorization Framework // RFC 6749, Oct. 2012. Available: https://datatracker.ietf.org/doc/html/rfc6749 (IETF Datatracker)
Jones M., Bradley J., and Sakimura N. JSON Web Token (JWT) // RFC 7519, May 2015. Available: https://datatracker.ietf.org/doc/html/rfc7519 (IETF Datatracker)
Audet F. and Jennings C. Network Address Translation (NAT) Behavioral Requirements for Unicast UDP // RFC 4787, Jan. 2007. Available: https://datatracker.ietf.org/doc/html/rfc4787 (IETF Datatracker)
Guha S. et al. NAT Behavioral Requirements for TCP // RFC 5382, Oct. 2008. Available: https://datatracker.ietf.org/doc/html/rfc5382 (IETF Datatracker)
Srisuresh P. and Holdrege M. IP Network Address Translator (NAT) Terminology and Considerations // RFC 2663, Aug. 1999. Available: https://datatracker.ietf.org/doc/html/rfc2663 (IETF Datatracker)
Penno R. et al. Updates to NAT Behavioral Requirements // RFC 7857, Apr. 2016. Available: https://www.rfc-editor.org/rfc/rfc7857.html (RFC Editor)
Cao Z. et al. Source-Independent Quantum Random Number Generation // Phys. Rev. X. Vol. 6, 011020, 2016. DOI: 10.1103/PhysRevX.6.011020 (Physical Review)
Wang C. et al. Provably-secure quantum randomness expansion with uncharacterized measurement devices // Nature Communications, 2023. DOI: 10.1038/s41467-022-35556-z (Nature)
Bamps C., Massar S., Pironio S. Device-independent randomness generation with low-power states // Quan-tum, 2018; Pironio et al., Nature, 2010. Available: https://quantum-journal.org/papers/q-2018-08-22-86/ (quantum-journal.org) DOI:10.22331/q-2018-08-22-86
Joch D. et al. Certified random-number generation from quantum steering // Phys. Rev. A. Vol. 106, L050401, 2022. DOI: 10.1103/PhysRevA.106.L050401 (Physical Review)
Kumar A. Nai, Kumar V. Device-independent, megabit-rate quantum random number generation with live quantumness certification. arXiv:2412.18285, 2024. Available: https://arxiv.org/abs/2412.18285 (arXiv)
Rukhin A. et al. A Statistical Test Suite for Random and Pseudorandom Number Generators for Crypto-graphic Applications, NIST SP 800-22 Rev. 1a, 2010. PDF: https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf (NIST Publications)
NIST, FIPS 203: Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM), 2024. Web/PDF: https://csrc.nist.gov/pubs/fips/203/final; https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.203.pdf (NIST Computer Secu-rity Resource Center, NIST Publications) DOI: 10.6028/NIST.FIPS.203
NIST, FIPS 204: Module-Lattice-Based Digital Signature Standard (ML-DSA), 2024. Web/PDF: https://csrc.nist.gov/pubs/fips/204/final; https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.204.pdf (NIST Computer Secu-rity Resource Center, NIST Publications) DOI:10.6028/NIST.FIPS.204
NIST, FIPS 205: Stateless Hash-Based Digital Signature Standard (SLH-DSA), 2024. Web/PDF: https://csrc.nist.gov/pubs/fips/205/final; https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.205.pdf (NIST Computer Secu-rity Resource Center, NIST Publications) DOI:10.6028/NIST.FIPS.205
NIST News, “NIST releases first 3 finalized post-quantum encryption standards,” Aug. 13, 2024. Available: https://www.nist.gov/news-events/news/2024/08/nist-releases-first-3-finalized-post-quantum-encryption-standards (NIST)
IETF, “Best Current Practice 127: Network Address Translation (NAT) Behavioral Requirements,” compris-ing RFC 4787 (UDP), RFC 6888 (CGN) and RFC 7857 (Updates), 2007–2016. Available: IETF Datatracker (BCP 127 info page https://datatracker.ietf.org/doc/bcp127/).
Zhang X.-G., Nie Y.-Q., Zhou H., Liang H., Ma X., Zhang J., and Pan J.-W. Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction // Review of Scientific Instruments. 2016. Vol. 87, no. 7. P. 076102. DOI:10.1063/1.4958663. (Preprint: arXiv:1606.09344).
Scarfone K. and Mell P. Guide to Intrusion Detection and Prevention Systems (IDPS), NIST SP 800-94, 2007. DOI:10.6028/NIST.SP.800-94
Joint Task Force. Security and Privacy Controls for Information Systems and Organizations, NIST SP 800-53 Rev.5, 2020. DOI:10.6028/NIST.SP.800-53r5
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).


