The idea of cracking a hash function at quantum speed

Authors

DOI:

https://doi.org/10.30837/rt.2025.2.221.07

Keywords:

cybersecurity, cryptography, quantum computing, Grover's algorithm, hash function, post-quantum cryptography, quantum security, quantum attacks

Abstract

The scientific article reviews and analyzes the current stage of cryptography development in the context of the inevitable post-quantum era. It is emphasized that post-quantum cryptography (PQC) is gaining the status of a key priority in the national security strategies of the world's leading developed countries, which are actively preparing for a fundamental transition to quantum-safe cryptographic practices. The consequence of the above is the urgent need for intensive development of the latest cryptographic algorithms, which by their nature will be resistant to attacks from powerful quantum computers. Today, several promising approaches to the creation of such quantum-safe algorithms based on various mathematical concepts and cryptographic primitives are already being actively studied. The article pays special attention to cryptography based on hash functions, which is considered one of the most promising areas in the context of developing reliable quantum-safe cryptographic tools. The potential for cracking cryptographic hash functions using quantum algorithms is analyzed. The article considers an original approach to assessing the quantum stability of hash functions, which consists in encoding the hash function itself in a quantum oracle, rather than its separate solution. A simplified (toy) hash function is used to clearly demonstrate the proposed idea. Based on the results of the experimental study, important conclusions are formulated, which indicate that quantum computers are indeed capable of significantly accelerating the process of inversion of cryptographic hash functions. This, in turn, provides strong grounds for serious concern about the cryptographic stability of various cryptographic primitives based on combinatorial problems. It is worth emphasizing that this problem is not limited to hash functions. This critically important observation means that to maintain a similar level of cryptographic security in the coming quantum era, the size of the input value of hash functions will likely need to be increased by at least half to compensate for the speedup provided by quantum algorithms.

References

Горбенко І. Д., Горбенко Ю. І. Прикладна криптологія : підручник. 2-ге вид. Харків : Форт, 2013. 878 с.

Горбенко Ю.І. Методи побудування та аналізу криптографічних систем : моногр. Харків : Форт, 2015. 959 с.

Gorbenko I.D. Methods of building general parameters and keys for NTRU Prime Ukraine of 5th–7th levels of stability. Product form / I.D. Gorbenko, O.G. Kachko, Yu.I. Gorbenko, I.V. Stelnik, S.O. Kandyi, M.V. Yesina // Telecommunications and Radio Engineering, 2019. Vol. 78. Is. 7. P. 579–594. Режим доступу: 10.1615/TelecomRadEng.v78.i7.30.

NIST IR 8413. Status Report on the Third Round of the NIST PostQuantum Cryptography Standardization Process. July 2022 (Updated 9/26/2022). [Електронний ресурс]. Режим доступу: 10.6028/NIST.IR.8413-upd1.

NIST IR 8105. Report on Post-Quantum Cryptography. April 2016. [Електронний ресурс]. Режим доступу: 10.6028/NIST.IR.8105.

NIST IR 8240. Status Report on the First Round of the NIST PostQuantum Cryptography Standardization Process. January 2019.[Електронний ресурс]. Режим доступу: 10.6028/NIST.IR.8240.

NIST IR 8309. Status Report on the Second Round of the NIST PostQuantum Cryptography Standardization Process. July 2020. [Електронний ресурс]. Режим доступу: 10.6028/NIST.IR.8309.

Про рішення Ради національної безпеки і оборони України від 14 травня 2021 року «Про Стратегію кі-бербезпеки України»: Указ Президента України; Стратегія від 26.08.2021 № 447/2021. Режим доступу: https://zakon.rada.gov.ua/laws/show/447/2021#n12.

Quantum Search for Scaled Hash Function Preimages Sergi Ramos-Calderer12, Emanuele Bellini1, José I. Latorre123, Marc Manzano1 and Victor Mateu1 arXiv:2009.00621v1 [quant-ph] 1 Sep 2020 1 Technology Innovation Institute, United Arab Emirates.

Bertoni Guido, Daemen Joan, P Michaël, and VA Gilles. Cryptographic sponge functions, 2011.

Aaronson Scott, Grier Daniel, Schaeffer Luke (2015). The Classification of Reversible Bit Operations. arXiv:1504.05155 [quant-ph].

Published

2025-06-19

How to Cite

Lysytskyi, K., & Lysytska, I. (2025). The idea of cracking a hash function at quantum speed. Radiotekhnika, (221), 51–56. https://doi.org/10.30837/rt.2025.2.221.07