Features of constructing data transmission systems over free-space optical routes
DOI:
https://doi.org/10.30837/rt.2025.1.220.14Keywords:
optics, laser, telecommunications, data, atmosphere, link, turbulenceAbstract
This paper provides an overview related to the current state of free-space optics systems, areas of their application and advantages compared to wireless radio-frequency systems. A review related to development history of such systems is also provided. Principles of transmitting/receiving equipment development, including common schemes, radiation sources, detectors and other basic components of these systems are covered in this paper. Analysis of the atmospheric conditions effect on optical signal transmission, such as atmospheric absorption, scattering and turbulence has been studied. The most common methods used to improve the efficiency of free-space optics systems are also considered in this paper.
References
D. Phillipson. Alexander Graham Bell | The Canadian Encyclopedia // Thecanadianencyclopedia.ca, Jul. 28, 2010. https://www.thecanadianencyclopedia.ca/en/article/alexander-graham-bell
H. Henniger. An introduction to free-space opticalcommunications // Journal of Radio Engineering. 2010. Vol. 19, no. 2. P. 203–212.
D. L. Begley. Free-space laser communications: a historical perspective // The 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society. Glasgow, UK, 2002. Vol.2. P. 391–392. doi: 10.1109/LEOS.2002.1159343.
W. S. Rabinovich et al. Free-space optical communications research and demonstrations at the US Naval Research Laboratory. 2015. Vol. 54, no. 31. P. F189–F189. doi: https://doi.org/10.1364/ao.54.00f189.
A. Biswas and W. H. Farr. Detectors for ground based reception of laser communication from Mars. Lasers and electro-optics society // The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society. 2004. Vol. 1. P. 74–75. 7-11 November 2004.
T. Jono et al. Demonstrations of ARTEMIS-OICETS Inter-Satellite Laser Communications // 24th AIAA International Communications Satellite Systems Conference, Jun. 2006, doi: https://doi.org/10.2514/6.2006-5461.
R. Lange and B. Smutny. Homodyne BPSK-based optical inter-satellite communication links // Proceedings of SPIE, the International Society for Optical Engineering/Proceedings of SPIE, Feb. 2007. doi: https://doi.org/10.1117/12.698646.
H. Le Minh, D. C. O’Brien, G. Faulkner, M. Wolf, L. Grobe, J. Lui, and O. Bouchet. A 1.25 Gbit/s indoor optical wireless demonstrator // IEEE Photonics Technology Letters. 2010. Vol. 22, no. 21. P. 1598–1600.
H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art // IEEE Communications Magazine. Sep. 2011. Vol. 49, no. 9. P. 56–62. doi: https://doi.org/10.1109/mcom. 2011.6011734.
N. Barnwell, T. Ritz, S. Parry, M. Clark, P. Serra, and J. W. Conklin. The Miniature Optical Communication Transceiver–A Compact, Power-Efficient Lasercom System for Deep Space Nanosatellites // Aerospace. Dec. 2018. Vol. 6, no. 1. P. 2. doi: https://doi.org/10.3390/aerospace6010002.
S. M. Walsh et al. Demonstration of 100 Gbps coherent free-space optical communications at LEO tracking rates // Scientific Reports. Oct. 2022. Vol. 12, no. 1. P. 18345. doi: https://doi.org/10.1038/s41598-022-22027-0.
Jürgen Jahns, Sing H. Lee. Optical Computing Hardware // Elsevier eBooks, Jan. 1994. doi: https://doi.org/10.1016/c2013-0-07396-3.
F. R. Gfeller and U. Bapst. Wireless in-house data communication via diffuse infrared radiation // Proceedings of the IEEE. Nov. 1979. Vol. 67. P. 1474–1486.
J. M. Kahn and J. R. Barry. Wireless infrared communications // Proceedings of the IEEE. Feb. 1997. Vol. 85, no. 2. P. 265–298. https://doi.org/10.1109/5.554222
M. Sichitiu and M. Kihl. Inter-vehicle communication systems: a survey // IEEE Communications Surveys & Tutorials. 2008. Vol. 10, no. 2. P. 88–105. doi: https://doi.org/10.1109/comst.2008.4564481.
Vincent. Optical satellite networks // Journal of Lightwave Technology. 2003. Vol. 21, no. 11. P. 2811–2827. doi: https://doi.org/10.1109/jlt.2003.819534.
E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, A. Guarino, and M. Matsumoto. 1.28-Tb/s (32x40 Gb/s) free-space optical WDM transmission system // IEEE Photonics Technology Letters. Aug. 2009. Vol. 21, no. 16. P. 1121–1123.
HITRANonline, www.hitran.org. https://www.hitran.org/ (accessed Jun. 22, 2024).
S. Bloom, E. Korevaar, J. Schuster, and H. Willebrand. Understanding the performance of free-space optics // Journal of Optical Networking. June 2003. Vol. 2, no. 6. P. 178–200.
Zhengyuan Xu and B. M. Sadler. Ultraviolet Communications: Potential and State-Of-The-Art // IEEE Communications Magazine. May 2008. Vol. 46, no. 5. P. 67–73. doi: https://doi.org/10.1109/mcom.2008.4511651.
G. Li. Recent advances in coherent optical communication // Advances in Optics and Photonics. Feb. 2009. Vol. 1, no. 2. P. 279. doi: https://doi.org/10.1364/aop.1.000279.
M. Razavi and J. H. Shapiro. Wireless optical communications via diversity reception and optical preamplification // IEEE Transactions on Wireless Communications. May 2005. Vol. 4, no. 3. P. 975–983. doi: https://doi.org/10.1109/twc.2005.847102.
A. O. Aladeloba, A. J. Phillips, and M. S. Woolfson. Improved bit error rate evaluation for optically pre-amplified free-space optical communication systems in turbulent atmosphere // IET Optoelectronics. 2012. Vol. 6, no. 1. P. 26. doi: https://doi.org/10.1049/iet-opt.2010.0100.
F. Dios, Juan Antonio Rubio, A. Rodríguez, and A. Comerón. Scintillation and beam-wander analysis in an optical ground station-satellite uplink // Applied optics. Jul. 2004. Vol. 43, no. 19. P. 3866–3866.doi: https://doi.org/10.1364/ao.43.003866.
I. E. Lee, Z. Ghassemlooy, W. P. Ng, and M.-A. Khalighi. Joint optimization of a partially coherent Gaussian beam for free-space optical communication over turbulent channels with pointing errors // Optics Letters. Jan. 2013. Vol. 38, no. 3. P. 350. doi: https://doi.org/10.1364/ol.38.000350.
H. Sandalidis. Optimization Models for Misalignment Fading Mitigation in Optical Wireless Links // IEEE Communications Letters. May 2008. Vol. 12, no. 5. P. 395–397. doi: https://doi.org/10.1109/lcomm.2008.071788.
X. Liu. Free-space optics optimization models for building sway and atmospheric interference using variable wavelength // IEEE Transactions on Communications. Feb. 2009. Vol. 57, no. 2. P. 492–498. doi: https://doi.org/10.1109/tcomm.2009.02.070089.
S. Arnon.Effects of atmospheric turbulence and building sway on optical wireless-communication systems // Optics Letters. Jan. 2003. Vol. 28, no. 2. P. 129. doi: https://doi.org/10.1364/ol.28.000129.
H. G. Sandalidis, T. A. Tsiftsis, and G. K. Karagiannidis. Optical Wireless Communications With Heterodyne Detection Over Turbulence Channels With Pointing Errors // Journal of Lightwave Technology. Oct. 2009. Vol. 27, no. 20. P. 4440–4445. doi: https://doi.org/10.1109/jlt.2009.2024169.
H. G. Sandalidis. Coded Free-Space Optical Links over Strong Turbulence and Misalignment Fading Channels // IEEE Transactions on Communications. Mar. 2011. Vol. 59, no. 3. P. 669–674. doi: https://doi.org/10.1109/tcomm.2011.121410.090318.
R. M. Goody and G. D. Robinson. Radiation in the troposphere and lower stratosphere // Quarterly Journal of the Royal Meteorological Society. Apr. 1951. Vol. 77, no. 332. P. 151–187. doi: https://doi.org/10.1002/qj.49707733203.
J. Mohale, M. R. Handura, T. O. Olwal, and C. N. Nyirenda. Feasibility study of free-space optical communication for South Africa // Optical Engineering. May 2016. Vol. 55, no. 5. P. 056108. doi: https://doi.org/10.1117/1.oe.55.5.056108.
H. A. Fadhil et al. Optimization of free space optics parameters // An optimum solution for bad weather conditions. Oct. 2013. Vol. 124, no. 19. P. 3969–3973. doi: https://doi.org/10.1016/j.ijleo.2012.11.059.
S. S. Muhammad. Characterization of fog attenuation in terrestrial free space optical links // Optical Engineering. Jun. 2007. Vol. 46, no. 6. P. 066001. doi: https://doi.org/10.1117/1.2749502.
Heinz Willebrand and B. S. Ghuman. Free space optics : enabling optical connectivity in today’s networks. Indianapolis, Ind. : Sams, 2002.
L. C. Andrews, R. L. Phillips, and C. Y. Hopen. Aperture averaging of optical scintillations: power fluctuations and the temporal spectrum // Waves in Random Media. Jan. 2000 Jan. 2000. Vol. 10, no. 1. P. 53–70. doi: https://doi.org/10.1088/0959-7174/10/1/305.
Tatarskii V. I. Wave propagation in a turbulent medium. Mineola, New York : Dover Publications, Inc, 2017.
X. M. Zhu and J. M. Kahn. Free-space optical communication through atomospheric turbulence channels // IEEE Transactions on Communications. Aug. 2002. Vol. 50, no. 8. P. 1293–1300.
N. D. Chatzidiamantis, H. G. Sandalidis, G. K. Karagiannidis, S. A. Kotsopoulos, and Michail Matthaiou. New results on turbulence modeling for free-space optical systems // CiteSeer X (The Pennsylvania State University), Apr. 2010, doi: https://doi.org/10.1109/ictel.2010.5478872.
S. A. Arpali, H. T. Eyyuboğlu, and Y. Baykal. Bit error rates for general beams // Applied Optics. Nov. 2008. Vol. 47, no. 32. P. 5971. doi: https://doi.org/10.1364/ao.47.005971.
Hamza Gerçekcioğlu, Yahya Baykal, and Cem Nakiboğlu. Annular beam scintillations in strong turbulence // Journal of the Optical Society of America. Jul. 2010. Vol. 27, no. 8. P. 1834–1834. doi: https://doi.org/10.1364/josaa.27.001834.
Frida Strömqvist Vetelino, C. Young, L. Andrews, and Jaume Recolons. Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence // Applied optics. Mar. 2007. Vol. 46, no 11. P. 2099–2099. doi: https://doi.org/10.1364/ao.46.002099.
S. Navidpour, M. Uysal, and M. Kavehrad. BER Performance of Free-Space Optical Transmission with Spatial Diversity // IEEE Transactions on Wireless Communications. Aug. 2007. Vol. 6, no. 8. P. 2813–2819.doi: https://doi.org/10.1109/twc.2007.06109.
R. K. Tyson. Bit-error rate for free-space adaptive optics laser communications // Journal of the Optical Society of America A. Apr. 2002. Vol. 19, no. 4. P. 753. doi: https://doi.org/10.1364/josaa.19.000753.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).