Trends in the development of wireless laser energy transmission
DOI:
https://doi.org/10.30837/rt.2025.1.220.13Keywords:
laser energy transmission, wireless energy, laser, optoelectronic converters, GaAsAbstract
The article reviews and analyzes the current state of laser energy transfer (LET) systems and their development prospects. The key components of the system, including laser emitters and high-performance optoelectronic converters (OCs), as well as the influence of the transmission medium on the system efficiency are considered.
Particular attention is paid to the optimization of each module of the OET to improve the efficiency of the entire system. The influence of laser radiation characteristics, DUT materials, temperature, and transmission conditions on the system efficiency is described. Modern achievements in the creation of multi-junction LETs using GaAs and other innovative materials are analyzed. Examples of practical applications of solar cells in aviation, space and military industries, including power supply of UAVs, spacecraft, as well as use in space solar power plants (SSPS) are considered.
The main technical limitations of modern LPS systems, which hinder the increase in overall efficiency to the level of 20-25 %, are highlighted. Possible directions for further research, such as the improvement of materials, laser cooling systems, and the adaptation of the LPE design to specific operating conditions, are presented.
LET is considered a promising technology that can change the approach to wireless energy supply in conditions where other methods are inefficient or dangerous. It is expected that in the future, due to further development of technologies, the efficiency of LEP systems will exceed 30%.
References
Electrodynamic Approach to Designing WPT Systems with Accounting for Non-system Interactions / A.I. Luchaninov, D.V. Gretskih, A.V. Gomozov, V.A. Katrich, M.V. Nesterenko // IEEE 2nd Ukraine Conference on Electrical and Computer Engineering UKRCON-2019. 2019. Р. 80–85.
Modeling the WPT system with the multistate transmitting subsystem / D. Gretskih, A. Luchaninov, A. Gomozov, V. Katrich, M. Nesterenko // Proceedings of the 2020 IEEE Ukrainian Microwave Week. 2020. P. 110–115.
Xu W., Wang X., Li W., Li S., Lu C. Research on test and evaluation method of laser wireless power transmission system // Eurasip Journal Advances Sigignal Processing. 2022. Vol. 2022 (1). P. 1–10.
Rohner M., Wagner L. Fiber-coupled high-power diode-lasers with highest radiance // Proceedings of the 2013 High Power Diode Lasers and Systems Conference, HPD. 2013. P. 36–39.
McCormick D., Irwin D., Stapleton D. Ultra-narrow spectral linewidth diode lasers for the pumping of alkalis // Proceedings of the 2015 High Power Diode Lasers and Systems Conference (HPD). 2015. P. 25–26.
Huang R. K., Samson B., Chann B. Recent progress on high-brightness kw-class direct diode lasers // Proceedings of the 2015 High Power Diode Lasers and Systems Conference, HPD. 2015. P. 29–30.
Kleine K., Balu P. High-power diode laser sources for materials processing // High Power Diode Las. 2017. P. 3–4.
Dong J., Zhang J., Yang X., Pan W., Cui S. High order cascaded Raman random fiber laser with high spectral purity // Opt. Express. 2018. Vol. 26 (5). P. 5275–5280.
Krasnoshchoka A., Xu J., Thorseth A., Thorseth A. High luminous flux laser lighting using single-crystal Ce, YAG phosphor // Proceedings of the 2019 IEEE High Power Diode Lasers and Systems Conference, HPD. 2019. P. 31–32.
Wang Y., Wu J., Zhao O. Single-frequency DBR Nd-doped fiber laser at 1120 nm with a narrow linewidth and low threshold // Opt. Lett. 2020. Vol. 45 (8). P. 2263–2266.
Nadimi M., Onyenekwu C., Major A. Continuous-wave dual-wavelength operation of the in-band diode-pumped Nd, GdVO4/Nd, YVO4 composite laser with controllable spectral power ratio // Appl. Phys. B. 2020. Vol. 126 (5). P. 75.
Pan G., Xun M., Zhao Z. High slope efficiency bipolar cascade 905 nm vertical cavity surface emitting laser // IEEE Electron. Dev. Lett. 2021. Vol. 42 (9). P. 1342–1345.
Fei Y.Z., Li Y., Tang Z.T. High-power, multi-junction, 905 nm vertical-cavity surface-emitting laser with an AlGaAsSb electron-blocking layer // Opt. Lett. 2023. Vol. 48 (8). P. 2142–2145.
Alvarez J., Pimienta J., Mercado E., Sarmiento R. An extended laser cavity centered at 780 nm for high-resolution laser spectroscopy applications // Las. Phys. 2023. Vol. 33 (5). P. 550.
Liu Y., Yang G., Zhao Y. 48 W continuous-wave output from a high-efficiency single emitter laser diode at 915 nm // IEEE Photonic Tech. L. 2022. Vol. 34 (22). P. 1218–1221.
Han M. Research on photoelectric conversion efficiency of GaAs concentrated cell under laser irradiation: dissertation. Nanjing University of Aeronautics and Astronautics, 2018. URL: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201901&filename=1019800556.nh&uniplatform=NZKPT&v=sFiHMT7eJYbThD4O4CbBMLlncq0HXdeU9F7R2QzvnVxHVzxWYMSpjhbuYNccxBuo3
King R. R., Bhusari D., Larrabee D., Liu X.-Q. Solar cell generations over 40% efficiency // Progress in Photovoltaics: Research and Applications. 2012. Vol. 20 (6). P. 801–815.
Ermer J., Jones K. R., Hebert P., Pien P. Status of C3MJ+ and C4MJ production concentrator solar cells at Spectrolab // 2011 37th IEEE Photovoltaic Specialists Conference. 2011. P. 941.
Miyazawa K., Watanabe Y. Shiseido develops innovative technology to convert ultraviolet light into light that brings about beneficial effects on the skin // Shiseido Company. 2024. URL: https://corp.shiseido.com/en/news/detail.html?n=00000000003256
Carroll D. A brighter idea: Wake Forest receives patent for new fiber solar cells // Wake Forest News. 2010. URL: https://news.wfu.edu/2010/04/08/a-brighter-idea-wake-forest-receives-patent-for-new-fiber-solar-cells / Steinsiek F., Foth W. P., Weber K. H. Wireless power transmission experiment as an early contribution to planetary exploration mission // Proceedings of the 54th International Astronautical Congress. 2003. P. 169–176.
Kawashima N., Takeda K., Yabe K. Application of the laser energy transmission technology to drive a small airplane // Chinese Optics Letters. 2007. Vol. 5 (101). P. 109–110.
Becker D. E., Chiang R., Keys C. C. Photovoltaic concentrator-based power beaming for space elevator application // AIP Conference Proceedings. American Institute of Physics, 2010. Vol. 1230 (1). P. 271–281.
Nishioka K., Takamoto T., Agui T., Kaneiwa M., Uraoka Y., Fuyuki T. Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells // Solar Energy Materials and Solar Cells. 2006. Vol. 90 (1). P. 57–67.
Kinsey G. S., Hebert P., Barbour K. E., Krut D. D., Cotal H. L., Sherif R. A. Concentrator multijunction solar cell characteristics under variable intensity and temperature // Progress in Photovoltaics: Research and Applications. 2008. Vol. 16 (6).Р. 503–508.
Nishioka K., Sueto T., Uchina M., Ota Y. Detailed analysis of temperature characteristics of an InGaP/InGaAs/Ge triple-junction solar cell // Journal of Electronic Materials. 2010. Vol. 39 (6). P. 704–708.
Wang Z., Zhang H., Liu Y. Theoretical and experimental analysis of electrical characteristics of InGaP/GaAs/Ge three-junction GaAs photovoltaic cells // Proceedings of the CSEE. 2013. Vol. 33 (27). P. 168–174.
Zimmermann S., Helmers H., Tiwari M. K., Paredes S. A high-efficiency hybrid high-concentration photovoltaic system // International Journal of Heat and Mass Transfer. 2015. Vol. 89. P. 514–521.
Kalyuzhnyy N. A., Emelyanov V. M., Evstropov V. V., Mintairov S. A. Optimization of photoelectric parameters of InGaAs metamorphic laser (λ = 1064 nm) power converters with over 50% efficiency // Solar Energy Materials and Solar Cells. 2020. Vol. 217. P. 100-107.
Fafard S., Masson D. P. 74.7 % efficient GaAs-based laser power converters at 808 nm at 150 K // Photonics. 2022. Vol. 9 (8). P. 579.
Merz J. L., Logan R. A., McBride P. L., Sergent A. M. GaAs double-heterostructure photodetectors // Journal of Applied Physics. 1977. Vol. 48 (8). P. 3580–3587.
Olsen L. C., Huber D. A., Dunham G., Addis F. W. High-efficiency monochromatic GaAs solar cells // The Conference Record of the 22nd IEEE Photovoltaic Specialists Conference. 1991. P. 419–424.
Helmers H., Lopez E., Hohn O., Lackner D. 68.9% efficient GaAs-based photonic power conversion enabled by photon recycling and optical resonance // Rapid Research Letters. 2021. Vol. 15 (7). P. 2100113.
Steinsiek F. Wireless power transmission experiment as an early contribution to planetary exploration missions // International Astronautical Congress. 2003. P. 169–176.
Li Q., Zheng Y., Guo X., Zhang G., Ding G. Interface engineering enhances the photovoltaic performance of wide bandgap FAPbBr3 perovskite for application in low-light environments // Adv. Functl. Mater. 2023. Vol. 33 (40). P. 1–23.
Guo X., Chen X., Li Q., Zhang G., Ding G., Li F. High-efficiency widebandgap perovskite solar cells for laser energy transfer underwater // Energy Technology. 2023. Vol. 11 (7).
Wang Y., Zheng Z., Wang J., Bi P., Chen Z. Organic laser power converter for efficient wireless micro power transfer // Nature Commun. 2023. Vol. 14 (1). P. 5511.
Cavallaro E. Researchers transmit energy with laser in historic power-beaming demonstration // U.S. Naval Research Laboratory. URL: https://www.nrl.navy.mil/Media/News/Article/2504007/researchers-transmit-energy-with-laser-in-historic-power-beaming-demonstration/
Irving M. Wireless power transmission tech demo uses lasers to run 5G station // New Atlas. URL: https://newatlas.com/energy/wireless-power-transmission-ericsson-powerlight
Uppal R. DARPA Airborne Energy Well seeks laser propulsion on Aircrafts to power Rechargable Unmanned Aerial Systems – International Defense Security & Technology // International Defense Security & Technology. URL: https://idstch.com/military/air/darpa-airborne-energy-well-seeks-laser-propulsion-on-aircrafts-to-power-rechargable-unmanned-aerial-systems/ .
Cavallaro E. Researchers transmit energy with laser in ‘historic’ power-beaming demonstration // U.S. Naval Research Laboratory. URL: https://www.nrl.navy.mil/Media/News/Article/2504007/researchers-transmit-energy-with-laser-in-historic-power-beaming-demonstration/.
Abdullah S., Mulles P. J. S., Amaya R. E. A new adaptive wireless power transfer solution for use with space rovers and vehicles // 2022 IEEE international conference on wireless for space and extreme environments (wisee). 2022. P. 49–54.
Sanders M., Kang J. S. Utilization of Polychromatic Laser System for Satellite Power Beaming // 2020 IEEE Aerospace Conference, Big Sky. 2020. P. 1–7.
Kerslake T. W., El-Genk M. S. Lunar Surface-to-Surface Power Transfer, AIP Conf. Proc. 964. 2008. P. 466–473.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).