Аналіз зондувальних сигналів систем радіоакустичного зондування атмосфери в функціональному просторі

Authors

  • A.P. Shamrai Харківський національний університет радіоелектроніки, Ukraine
  • I.E. Kondrashov Харківський національний університет радіоелектроніки, Ukraine

DOI:

https://doi.org/10.30837/rt.2024.4.219.07

Keywords:

remote sensing of the atmosphere, temperature, method, analysis, synthesis, probing signal, functional analysis, optimality criterion

Abstract

Systems of radio acoustic sounding (RAS) of the atmosphere provide information on the state of processes occurring in the lower layers of the atmosphere. They allow measuring vertical profiles of atmospheric temperature, wind speed, and air humidity. The obtained information is used in applied tasks to ensure the takeoff and landing of aircraft, weather forecasting, and the study of atmospheric processes. However, the effectiveness of the existing radio-acoustic means is insufficient, and there are practical needs for the development of appropriate promising structures and algorithms that will be implemented during the construction of specific stations.

The article presents new approaches and a new mathematical apparatus developed for use in the analysis and synthesis of probing signals of the RAS systems. The process of interaction of acoustic and electromagnetic signals in the environment is described using functional analysis and abstract mathematical spaces, which will make it possible to consider such signals together, use visual geometric representations, and generally increase the effectiveness of the tasks of research and synthesis of such complex, heterogeneous signals.

The features of the distance surfaces for different pairs of probing signals were studied using the method of mathematical modeling. The general regularities of the studied surfaces of signal distances are as follows: there is a certain main lobe of the surface in which the connection of sounding acoustic and electromagnetic signals of different physical nature is significant. As the values ​​of the parameters of the functional space increase, the degree of signal communication decreases, and depending on the shape of the contour signals, side lobes of the surface can be observed, the sizes of which depend on the characteristic features of the contours.

The obtained research results will provide the possibility of setting up and solving the actual problems of analysis and synthesis of sounding signals using the mathematical apparatus of functional analysis.

References

Bradley S. Atmosphere Acoustic Remote Sensing. Principes and Application. CRC Press, 2007. 267 p.

Kartashov V.M., Tikhonov V.A., Oleinikov V.N. Signal processing in radio electronic systems for remote monitoring of the atmosphere. Kharkiv : KNURE, 2014. 312 p.

Карташов В.М. Моделі і методи обробки сигналів систем радіоакустичного і акустичного зондування атмосфери. Харків : ХНУРЕ, 2011. 234 с.

Lataitis R.J. Theory and Application of a radio-acoustic sounding system (RASS): NOAA Technical Memorandum ERL WPL-230. Nat. Oceanic and Atmos. Admin. Environ, Res. Labs. Boulder, CO, 1993, 207 p.

Kartashov V., Babkin S., Kartashov A., Pershyn Y. Development of the Atmosphere Radio-Acoustic Sounding Method in Ukraine and in the World in the Period of 1961-2000 // 2023 IEEE 6th International Conference on Information

and Telecommunication Technologies and Radio Electronics, UkrMiCo 2023, 13–15 November 2023, Kyiv, Ukraine. Р. 372–376. DOI: 10.1109/UkrMiCo61577.2023.10380339

Remtech Radio Acoustic Sounding System (RASS) for remote sensing of temperature. URL: https://remtechinc.com/wp-content/uploads/RASS3.pdf.

Temperature Profiler RASS. URL: https://metek.de/product-group/rass/.

RASS for Radar Wind Profilers. URL: https://www.scintec.com/catalogs/rass-for-radar-wind-profilers/.

Ситнік О.В., Карташов В.М. Радіотехнічні системи : навч. посіб. Харків : Сміт, 2009. 448 с.

Chandrasekhar Sarma, T. V., Narayana Rao, D., Furumoto, J., and Tsuda, T. Development of radio acoustic sounding system (RASS) with Gadanki MST radar – first results // Ann. Geophys. 2008. №26. Р. 2531–2542.

https://doi.org/10.5194/angeo-26-2531-2008

Alexander S. P., Murphy D. J., Klekociuk A. R., High resolution VHF radar measurements of tropopause structure and variability at Davis, Antarctica (69° S, 78° E) // Atmos. Chem. Phys. 2013. №13. Р. 3121–3132.

doi:10.5194/acp-13-3121-2013

Kartashov V.M. Estimation of Signal Parameters Scattered by an Acoustic Wave Packet // Telecommunications and Radio Engineering, 2004. Vol. 61, №2. Р. 125–129.

Muradyan P., Richard Coulter R. Radar Wind Profiler (RWP) and Radio Acoustic Sounding System (RASS) Instrument Handbook. March, 2020. Environmental Science Division, Argonne National Laboratory. 20 p. URL: https://www.arm.gov/publications/tech_reports/handbooks/rwp_handbook.pdf

Kartashov V.M. Signal Scattering Functions of Atmospheric Sounding System // Telecommunications and Radio Engineering. 2003. Vol. 59, №7–9. Р. 88–94.

Kartashov V., Oleynikov V., Koryttsev I., Sheiko S., Zubkov O., Babkin S. Processing of Wide Band Acoustic Signals During Detection of Unmanned Aerial Vehicles // 2020 IEEE Ukrainian Microwave Week (UkrMW). Kharkiv,

Ukraine, September 21 – 25, 2020. Vol. 1 on 2020 IEEE 12th International Conference on Antenna Theory and Techniques (ICATT). Р. 35–39.

Developing and Applying Optoelectronics in Machine Vision / O. Sergiyenko, J.C. Rodriguez-Quiñonez. IGI Global, 2016. 341p.

Kartashov V.M., Tikhonov V.A., Voronin V.V. and Tymoshenko L.P. Complex model of random signal in problems of acoustic sounding of atmosphere // Telecommunications and Radio Engineering. 2016. V. 75, Iss. 20. Р.1885–1892.

Oleksandr Sotnikov, Vladimir Kartashov, Oleksandr Tymochko, Oleg Sergiyenko, Vera Tyrsa, Paolo Mercorelli, Wendy Flores-Fuentes. Methods for Ensuring the Accuracy of Radiometric and Optoelectronic Navigation

Systems of Flying Robots in a Developed Infrastructure. Chapter 16 // Machine Vision and Navigation. Springer, Cham. Р.537–578.

Developing and Applying Optoelectronics in Machine Vision / O. Sergiyenko, J.C. Rodriguez-Quiñonez. IGI Global, 2016. 341p.

Піза Д.М. Теорія і проектування радіолокаційних систем : навч. посіб. Запоріжжя : ЗНТУ, 2019. 82 с.

Сумик М. М. Основи теорії радіотехнічних систем : навч. посіб. Львів : Львівська політехніка, 2004. 240 c.

Радіоелектронні системи : навч. посіб. / Ю.М. Седишев та ін. Харків : ХУПС, 2010. 360 с.

Радіоелектронні системи : навч. посіб. / П. Ю. Баранов, В. П. Лавриненко, О. М. Мелешкевич, В. С. Дмитренко. Одеса, 2012. 232 с.

Published

2025-03-16

How to Cite

Shamrai, A., & Kondrashov , I. (2025). Аналіз зондувальних сигналів систем радіоакустичного зондування атмосфери в функціональному просторі. Radiotekhnika, (219), 59–67. https://doi.org/10.30837/rt.2024.4.219.07

Issue

Section

Articles