Using the ARCore library to visualize keypoint clouds in navigation systems

Authors

DOI:

https://doi.org/10.30837/rt.2024.4.219.06

Keywords:

navigation systems, keypoint clouds, human health, distance visualization, data processing

Abstract

The article explores the prospects of using the ARCore to create navigation systems tailored for visually impaired individuals. The ARCore is an augmented reality platform that combines visual and inertial odometry to ensure precise device localization in space. The authors describe the key principles of the ARCore, including methods for extracting and tracking key points, integrating IMU readings, and calculating movement trajectories.

Special attention is given to the architecture of the navigation system, which relies on smartphones to perform computational tasks such as SLAM algorithm implementation and neural network inference. The system processes data locally on the smartphone and transmits the results to a tactile feedback module via Bluetooth. This approach ensures the affordability and compactness of the final product.

To improve data accuracy, the authors propose the use of clustering algorithms such as DBSCAN, Local Outlier Factor (LOF), and the Kalman filter. These methods are aimed at filtering out noise and stabilizing data, which is particularly crucial for building effective navigation systems.

In conclusion, the authors highlight that combining the ARCore with neural networks and modern data processing algorithms opens new possibilities for creating accessible and functional solutions to improve the mobility of visually impaired individuals. Future research will focus on optimizing algorithms, training neural networks on specialized datasets, and experimentally testing the system in real-world conditions.

References

World Health Organization: WHO. Blindness and vision impairment. Who. int, Oct. 11, 2018. https://www.who.int/en/news-room/fact-sheets/detail/blindness-and-visual-impairment

Microsoft, “Seeing AI,” Microsoft Garage. https://www.microsoft.com/en-us/garage/wall-of-fame/seeing-ai/

“Design principles – Wayfindr – Open Standard,” Wayfindr, 2015. https://www.wayfindr.net/open-standard/designing-for-vision-impaired-people/design-principles (accessed Jan. 24, 2025).

Sokolov A., Avrunin O., Selivanova K. and Shushliapina N. Application of Augmented Reality Technologies for Determining Distances in Navigation System for the Blind // 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Oct. 2024, pp. 530–533. doi: https://doi.org/10.1109/tcset64720.2024.10755743.

Sokolov A., Avrunin O. Evaluation of ARCORE library capabilities for determining the distance to objects in the frame // Optoelectronic Information-Power Technologies. 2024. Vol. 47, no. 1. Р. 58–65. doi: https://doi.org/10.31649/1681-7893-2024-47-1-58-65.

Pastukh V., Andrushchak V., Beshley M., Klymash M., and Vdovychenko V. DEVELOPMENT OF AN INTELLIGENT NAVIGATION AND SPATIAL ORIENTATION SYSTEM FOR PEOPLE WITH VISUAL IMPAIRMENTS // Information and communication technologies electronic engineering. 2023. Vol. 3, no. 1. Р. 53–63. doi: https://doi.org/10.23939/ictee2023.01.053.

Tymkovych M. et al. 3D scanning technologies by optical RealSense cameras for SIREN-based 3D hand representation. Dec. 2023, doi: https://doi.org/10.1117/12.3022737.

Tymkovych M., Avrunin O., Selivanova K., Kolomiiets A., Bednarchyk T., and Saule Smailova. Correspondence matching in 3d models for 3d hand fitting // Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska. 2024. Vol. 14, no. 1. Р. 78–82. doi: https://doi.org/10.35784/iapgos.5498.

Use the ARCore Depth API for immersive augmented reality experiences // Google Codelabs. https://codelabs.developers.google.com/codelabs/arcore-depth/#0

How Visual Inertial Odometry (VIO) Works // Welcome to The Library!, Apr. 03, 2024. https://www.thinkautonomous.ai/blog/visual-inertial-odometry/.

Computer Vision: Algorithms and Applications. 2nd ed. szeliski.org. https://szeliski.org/Book/

47billion, Distance Measurement on Mobile App using ARCore,” 47Billion, May 19, 2021. https://47billion.com/blog/distance-measurement-on-mobile-app-using-arcore/.

Frame. Google for Developers, 2024. https://developers.google.com/ar/reference/java/com/google/ar/core/Frame#acquirePointCloud.

Ultralytics, “Predict,” docs.ultralytics.com. https://docs.ultralytics.com/modes/predict/#inference-sources

OpenCV: Drawing Functions in OpenCV. docs.opencv.org. https://docs.opencv.org/4.x/dc/da5/tutorial_py_drawing_functions.html

Avrunin О.G. Experience of Developing a Laboratory Base for the Study of Modern Microprocessor Systems / О.G. Avrunin, T.V. Nosova, V.V. Semenets // Proceedings of I International Scientific and Practical Conference «Theoretical and Applied Aspects of Device Development on Microcontrollers and FPGAs» MC&FPGA-2019, Kharkiv, Ukraine, 2019. P. 6–8.

Avrunin O., Sakalo S., Semenetc V. Development of up-to-date laboratory base for microprocessor systems investigation // 2009 19th International Crimean Conference Microwave & Telecommunication Technology. Sevastopol, 2009. Р. 301–302.

Оцінка можливостей бібліотеки ARCORE для визначення дистанції до об’єктів у кадрі / А. А. Соколов, О. Г. Аврунін // Опт-ел. інф-енерг. техн. 2004. Вип. 47, № 1. С. 58–65. DOI: 10.31649/1681-7893-2024-47-1-58-65.

Published

2025-03-16

How to Cite

Sokolov, A., Sokolov, A., Sokolov, A., & Avrunin, O. (2025). Using the ARCore library to visualize keypoint clouds in navigation systems. Radiotekhnika, (219), 53–58. https://doi.org/10.30837/rt.2024.4.219.06

Issue

Section

Articles