Development and study of the algorithm for automated recognition of gas meter readings

Authors

  • O.V. Zubkov Харківський національний університет радіоелектроніки, Ukraine https://orcid.org/0000-0002-8528-6540
  • O.C. Yakovenko Харківський національний університет радіоелектроніки, Ukraine
  • C.V. Starokozev Харківський національний університет радіоелектроніки, Ukraine
  • C.V. Starokozev Харківський національний університет радіоелектроніки, Ukraine
  • M.V. Skorbatuk Харківський національний університет радіоелектроніки, Ukraine

DOI:

https://doi.org/10.30837/rt.2024.4.219.05

Keywords:

counter, recognition, neuron, chain, algorithm, convolution, architecture

Abstract

The relevance of developing an algorithm for automatic recognition of gas meter readings for test benches and real-time monitoring has been substantiated. A review of modern methods for recognizing readings on meter images has been conducted. The choice of the YOLOv10s neural network architecture for recognizing meter readings has been justified. The efficiency of the chosen architecture was validated after training it on a created meter images dataset. Based on the testing results, a second stage of recognition results processing was added, allowing the removal of background fragment detections and sorting the sequence of meter reading digits. In the second stage, a developed convolutional neural network was also employed, ensuring repeated verification of readings and error detection during recognition.

References

Shelke S., Pathak I.S., Sangai A.P., Lunge D. A Review Paper on Computer Vision // International Journal of Advanced Research in Science Communication and Technology. Deli. 2023. Vol.3, Iss.2. P.1–4. DOI:10.48175/IJARSCT-8901

Dong S., Wang P., Abbas K. A survey on deep learning and its applications// Computer Science Review. Amsterdam. 2021. Vol.40, Iss.C. P.1–8. https://doi.org/10.1016/j.cosrev.2021.100379

Mahadevkar S.V. A Review on Machine Learning Styles in Computer Vision – Techniques and Future Directions // IEEE Access. Piscataway. 2022. Vol.10. Р.1-37. DOI:10.1109/ACCESS.2022.3209825

Chai J., Zeng H., Li A., Ngai E.W.T. Deep learning in computer vision: A critical review of emerging techniques and application scenarios. Machine Learning with Applications. Amsterdam. Vol. 6. 2021. Р.1–13. DOI:10.1016/j.mlwa.2021.100134

Tarhib S., Tanha J., Imanzadeh S., Hassanzadeh S. Multi Model CNN Based Gas Meter Characters Recognition // 13th International Conference on Computer and Knowledge Engineering (ICCKE). IEEE: Mashhad, Iran. 2023. P.1–7. DOI:10.1109/ICCKE60553.2023.10326299

Wang J. A Study of The OCR Development History and Directions of Development // Highlights in Science Engineering and Technology. Milan. 2023. Vol.72. P.409–415. DOI:10.54097/bm665j77

Kaur R., Singh E.R. Image Filtering Techniques-A Review // International journal of advance research in science and engineering. Deli. 2017. Vol.6, Iss. 8. P.1–6. DOI:10.23956/ijarcsse/V7I6/0105

Hassam T., Muhammad S. K., Muhammad O. T. Performance Analysis and Comparison of Faster R-CNN, Mask R-CNN and ResNet50 for the Detection and Counting of Vehicles // 2021 International Conference on Computing, Communication, and Intelligent Systems, Greater Noida, India, 19–20 February 2021. Piscataway, NJ: IEEE, 2021. P. 587–594. DOI:10.1109/ICCCIS51004.2021.9397079

Mukaram S., Nizar Z., Mahmoud M. An Improved YOLOv8 to Detect Moving Objects // IEEE Access. Piscataway. 2023. Vol. 11. P. 1–25. DOI:10.1109/ACCESS.2024.3393835

Muhammad H. YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and Industrial Defect Detection // Machines. 2023. Vol. 11, Iss. 7. P. 1–25. DOI:10.3390/machines11070677

Yixiao Z.,Yuanming G., Xiaolong C. Research on YOLOv5 Vehicle Detection and Positioning System Based on Binocular Vision // World Electric Vehicle Journal. Basel. 2024. Vol. 15, Iss.2. P. 1–15. https://doi.org/10.3390/wevj15020062

Cao J. and oth. Front Vehicle Detection Algorithm for Smart Car Based on Improved SSD Model // Sensors. Basel. Vol. 20. 2020. Р.1–21. DOI:10.3390/s20164646

Choi H.K., Paik C.K. Recurrent DETR: Transformer-basedObject Detection for Crowded Scenes // IEEE Access. Piscataway. Vol. 4. 2023. Р. 1–21. DOI:10.1109/ACCESS.2023.3293532

Zubkov O., Sheiko S., Oleynikov V., Kartashov V., Babkin S. Investigation Of The Yolov5 Algorithm Efficiency For Drone Recognization // Telecommunications and Radio Engineering. Redding. 2024. Vol.83, Iss.1. P.65–79. DOI:10.1615/TelecomRadEng.2023048987

Jung H.K., Choi G.S. Improved YOLOv5: Efficient Object Detection Using Drone Images under

Various Conditions // Appl. Sci. Basel. 2022.Vol. 12. Р.1–16. DOI: 10.3390/app12147255

Illia Oleksiienko, Dat Thanh Tran, Alexandros Iosifidis. Variational Neural Networks implementation in Pytorch and JAX // Software Impacts. Amsterdam. 2022. Vol.14. P.1–8. https://doi.org/10.1016/j.simpa.2022.100431

Zebin T., Scully P.J., Peek N., Casson A. Design and Implementation of a Convolutional Neural Network on an Edge Computing Smartphone for Human Activity Recognition // IEEE Access. Piscataway. Vol. 8. 2019. Р. 1–11 DOI:10.1109/ACCESS.2019.2941836

Published

2025-03-16

How to Cite

Zubkov, O., Yakovenko, O., Starokozev, C., Starokozev, C., & Skorbatuk, M. (2025). Development and study of the algorithm for automated recognition of gas meter readings. Radiotekhnika, (219), 46–52. https://doi.org/10.30837/rt.2024.4.219.05

Issue

Section

Articles