Characteristics of a controlled Bragg reflection waveguide with gyrotropic cladding

Authors

DOI:

https://doi.org/10.30837/rt.2024.3.218.12

Keywords:

Bragg waveguide, magnetophotonic crystal, gyrotropic layers, ferrite, bandwidth

Abstract

A planar Bragg waveguide with a hollow channel, the cladding of which contains periodically arranged dielectric and gyrotropic ferrite layers, has been theoretically investigated. A two-dimensional model of the waveguide is developed taking into account the frequency dependence of the components of the magnetic permeability tensor of gyrotropic layers. Results of numerical calculations (using the finite element method) show regularities of influence of the external magnetic field (pointed to the direction transverse to the longitudinal axis of the structure) induction on the dispersion characteristics of the Bragg waveguide cladding and its spectral characteristics. The orientation of the external magnetic field corresponds to the Voigt configuration. An increase in the induction of the magnetic field leads to a significant transformation of the band gap of the waveguide channel cladding. There is an increase in its width and a shift towards higher frequencies. The results of the calculations of the spectral characteristics indicate the corresponding changes that occur in the frequency band of the Bragg waveguide. It is shown that the increase in the width of the transmission zone of the waveguide occurs mainly in the high-frequency region of the considered part of the spectrum. The calculated spatial distribution of the electric field in the studied structure indicates a high degree of localization of electromagnetic energy in the hollow waveguide channel within its transmission zone. This makes it possible to simplify the model of the studied structure due to the exclusion from consideration of losses in gyrotropic layers. On the basis of controlled Bragg waveguides, a variety of functional devices in the microwave and optical ranges can be developed, the operating characteristics of which change under the influence of an external magnetic field.

References

Gong Q. and Hu X. (2014) Photonic crystals: Principles and applications. Singapore: Pan Stanford Publishing.

Dhanabalan S.S. et al. (2023) Photonic crystal and its applications for Next Generation Systems. Singapore: Springer.

Li M. et al. Lithium niobate photonic-crystal electro-optic modulator // Nature Communications. 2020. No 11(1). doi:10.1038/s41467-020-17950-7.

Xu B. et al. A terahertz circulator based on Magneto Photonic Crystal Slab // Photonics. 2023. No10(4). P. 360. doi:10.3390/photonics10040360.

Tang G. et al. Controllable one-way add-drop filter based on magneto-optical photonic crystal with ring resona-tor and microcavities // Optics Express. 2022. No 30(16). P. 28762. doi:10.1364/oe.460271.

Liu J.-X. et al. (2016) A research of magnetic control ferrite photonic crystal filter // Plasmonics. 2016. No 12(4). P. 971–976. doi:10.1007/s11468-016-0348-5.

Wang Y. et al. An electrically controlled tunable photonic crystal filter based on thin-film lithium niobate // Optoelectronics Letters. 2024. No 20(4). P. 200–204. doi:10.1007/s11801-024-3156-8.

Pedraza Caballero L.E. and Vilela Neto O.P. A review on Photonic Crystal Logic Gates // Journal of Integrated Circuits and Systems. 2021. No 16(1). P. 1–13. doi:10.29292/jics.v16i1.478.

Sung G.-F. et al. Electrically tunable defect-mode wavelengths in a liquid-crystal-in-cavity hybrid structure in the near-infrared range // Materials. 2023. No 16(8). P. 3229. doi:10.3390/ma16083229.

Wu C.-Y. et al. Tunable bi-functional photonic device based on one-dimensional photonic crystal infiltrated with a bistable liquid-crystal layer // Optics Express. 2011. No 19(8). P. 7349. doi:10.1364/oe.19.007349.

Wu C., Fan J. and Wen G. Magnetically controlled thz three-routing switch based on magnetic photonic crys-tals // ICEICT 2020 – IEEE 3rd International Conference on Electronic Information and Communication Technology, doi:10.1109/iceict51264.2020.9334253.

Dakhlaoui H. et al. Harnessing a dielectric/plasma photonic crystal as an optical microwave filter: Role of de-fect layers and external magnetic fields // Materials. 2024. No 17(3). P. 559. doi:10.3390/ma17030559.

Yeh P. and Yariv A. Bragg Reflection Waveguides // Optics Communications. 1976. No 19(3). P. 427–430. doi:10.1016/0030-4018(76)90115-2.

West B.R. and Helmy A.S. Properties of the quarter-wave Bragg reflection waveguide: Theory // Journal of the Optical Society of America B. 2006. No 23(6). P. 1207. doi:10.1364/josab.23.001207.

Sashkova Y.V., Odarenko E.N., Shmat’ko A.A. and Afanasieva O.V. Modified Bragg reflection waveguides with binary and ternary claddings // UkrMW 2022 – IEEE 2nd Ukrainian Microwave Week, 2022. doi:10.1109/ukrmw58013.2022.10037133.

Pozar D.M. Microwave engineering. New York, 1998. N.Y. : Wiley.

Zhang T., Wang G. and Deng D. Switching characteristics of periodically multilayered gyromagnetic metama-terials in waveguide structure // Results in Physics. 2020. No 19. P. 103625. doi: 10.1016/j.rinp.2020.103625.

Fu J.-X., Liu R.-J. and Li Z.-Y. Experimental demonstration of tunable gyromagnetic photonic crystals con-trolled by DC magnetic fields // EPL (Europhysics Letters). 2010. No 89(6). P. 64003. doi:10.1209/0295-5075/89/64003.

Kee C.-S. et al. Two-dimensional tunable magnetic photonic crystals // Physical Review B. 2000. No 61(23). P. 15523–15525. doi:10.1103/physrevb.61.15523.

Abirami N. and Joseph Wilson K.S. Investigation on photonic band gap of a magneto photonic crystal // Optik. 2020. No 208, 164092. doi: 10.1016/j.ijleo.2019.164092.

Ataei E., Sharifian M. and Bidoki N.Z. Magnetized plasma photonic crystals band gap // Journal of Plasma Physics. 2014. No 80(4). P. 581–592. doi:10.1017/s0022377814000105.

Shmat'ko A.A., Mizernik V. N. and Odarenko E.N. Surface and bulk modes of magnetophotonic crystals // TCSET 2018 – Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering. 2018. P. 436-440. doi:10.1109/TCSET.2018.8336235.

Zhang HF., Liu SB., Kong XK. et al. Photonic band gap of three dimensional magnetized photonic crystal with Voigt configuration // Eur. Phys. J. D. 2013. No 67. P. 169. doi:10.1140/epjd/e2013-40193-3.

Lee K.K. et al. (2008) A tale of two limits: Fundamental properties of photonic-crystal fibers // SPIE Proceedings [Preprint]. doi:10.1117/12.778570.

Odarenko E., Shmat'ko A., Sashkova Y., Demydenko Y., Novytskyi V. and Shevchenko N. Formation and Tuning of Frequency Comb-Like Signal in Photonic Crystal Coupled-Cavities Waveguides // AICT 2023 – 5th IEEE International Conference on Advanced Information and Communication Technologies, 2023, p. 44–47. doi: 10.1109/AICT61584.2023.10452685.

Published

2024-09-26

How to Cite

Demydenko, Y., Novytskyi, V., Odarenko, Y., & Shmat’ko, O. (2024). Characteristics of a controlled Bragg reflection waveguide with gyrotropic cladding. Radiotekhnika, 3(218), 144–150. https://doi.org/10.30837/rt.2024.3.218.12

Issue

Section

Articles