Status and prospects for the use of diagnostic tools based on the method of gas-discharge visualization
DOI:
https://doi.org/10.30837/rt.2024.3.218.11Keywords:
diagnostics, object, gas, discharge, electric, radiation, spectrum, pulse, high-voltage, frequencyAbstract
Diagnostic tools based on the gas-discharge visualization method were created for scientific and applied research of biological and non-biological objects, the state of the environment. The diagnostic essence of the method is the connection of the glow of an electric discharge around the object in the atmospheric air with the electrophysical properties of the internal and surface structures of the object, which in turn are interpreted as medical and biological indicators for living organisms, or technical characteristics for non-living ones structures. With the help of these tools, you can diagnose the human body, study liquids and materials of organic and inorganic origin. The disadvantages of the method include the dependence of informative indicators of discharge images not only on the properties of the object, but also on the constancy of the parameters of the surrounding environment. There are no uniform metrological requirements for the technical means of gas discharge visualization, which prevents their practical application. The purpose of the research is to find technical solutions for the construction of gas-discharge visualization tools to achieve the potential possibilities of their practical application. The analysis of the physical and technical conditions of gas-discharge visualization showed that with the relative constancy of the physical regularities of the discharge, the modes of measurement of the informative indicators of the images in these means differ significantly (amplitude, frequency, duration, form of alternating voltage). The known designs differ in the type of sensor, method and device of primary radiation registration, algorithms for reproduction and processing of the diagnostic image. It is proposed to standardize the technical characteristics of these tools and algorithms for obtaining informative indicators to compare correctly the diagnostic results obtained by different researchers (especially in the medical field). It is advisable to expand the use of gas-discharge visualization tools for controlling the composition of technical liquids, non-destructive flaw detection of materials and structures. It is recommended to add information about the characteristics of the surrounding atmospheric air (temperature, humidity, pressure) when conducting diagnostics.
References
Медична діагностика. Технічна діагностика. https://uk.wikipedia.org/wiki
Потяженко М. М. Інноваційні методики об’єктивного обстеження з комп’ютерним тестуванням в еволюції реєстрації фізичних феноменів лікарем терапевтичного профілю: історія, реальність, перспективи / М. М. Потяженко, Г. В. Невойт // Медична інформатика та інженерія. 2018. № 4. С. 57–65. DOI: https://doi.org/10.11603/mie.1996-1960.2018.4.9894
Oliinyk V., Babakov M., Lomonosov Y., Oliinyk V., Zinchenko O. Modernization of gas discharge visualization for application in medical diagnostics // Technology Audit and Production Reserves. 2020. 4 (1 (66)).
Р. 21–29. doi: http://doi.org/10.15587/2706-5448.2022.263397
Korotkov K.G. Advances in Diagnosis and Monitoring of the human quantum informational field with GDV technique // ParaDigm 2001: Consciousness and Paranormal Phenomena, 2008. https://www.researchgate.net/publication/228831552_Advances_in_Diagnosis_and_Monitoring_of_the_human_quantum_informational_field_with_GDV_technique
Method for Determining the Condition of a Biological Object and Device for Making Same / United States Patent (10) Patent No.: US 8,321,010 B2 // Korotkov et al. Date of Patent: Nov. 27, 2012
Білинський Й. Й. Методи і засоби газорозрядної візуалізації для аналізу рідиннофазних біооб’єктів : монографія / Й. Й. Білинський, О. А. Павлюк. Вінниця : ВНТУ, 2016. 120 с.
Application of Electrophoton Capture (EPC) Analysis Based on Gas Discharge Visualization (GDV) Tech-nique in Medicine: A Systematic Review / K.G. Korotkov, P. Matravers, D.V. Orlov [et al.] // J of Alternative and Com-plementary Medicine. 2010. Vol. 16. № 1. P. 13–25.
Кухтин В. В. Апаратна реалізація і діагностичні можливості методу газорозрядної візуалізації / В. В. Кухтин, П. В. Петельський, Ю. В. Чепурний // Вісник Нац. техн. ун-ту "КПІ". Сер. Радіотехніка. Радіоапаратобудування. 2010. № 42. С. 139–144.
Білинський Й. Й. Дослідження спектрів випромінювання рідиннофазних об’єктів при газорозрядній візуалізації / Й. Й. Білинський, О. А. Павлюк, С. В. Юкиш // Технологічний аудит та резерви виробництва. 2014. № 3. С. 58–61.
Глухова Н. В. Інформаційна технологія для аналізу кольорових зображень газорозрядного випромінювання / Н. В. Глухова, Л. А. Пісоцька // Перспективні технології та прилади. Луцьк, 2018. Вип. №12. С. 48–52.
Reizer Ju.P. Gas Discharge Physics. Springer, 2001. 449 p.
Glukhova N.V. Application of wavelets transform for analysis of images of gas-discharge radiation of water N.V. Glukhova, L.A. Pesotskaya, N.G. Kuchuk, J.N. Kharlamova // Системи обробки інформації. 2016. № 2(139). С. 179-185.
Xanadu C. Analysis of kirlian images: feature extraction and segmentation / Xanadu C. Halkias, Petros Maragos // IEEE (School of Electrical & Computing Engineering, National Technical University of Athens, Zografou 15773 Athens, Greece). 2004. P. 4.
Retrieved from: http://xn--annciowww-68a.bio-well.com/assets/files/kirlian_devices.pdf
DEVICE FOR DETERMINING THE STATE OF A BIOLOGICAL SUBJECT United States Patent Appli-cation Publication (10) Pub. No.: US 2010/0106424 A1 Korotkov et al.(43) Pub. Date:Apr. 29, 2010 Konstantin Geor-gievich Korotkov, Saint-Petersburg (RU); Svetlana Alexandrovna Korotkina, Saint Petersburg (RU); Ramiz Ragim-Ogly Jusubov, Saint Petersburg (RU).
Пат. 70099 Україна, МПК (2012.01) G03B 41/00, G03G 17/00. Пристрій для експрес-оцінки стану біо-логічного об’єкта / Семенець В. В., Подпружников П. М.., Левенець О. С. № u 2011 13774; Заявл. 23.11.2011; Опубл. 25.05.2012, Бюл. № 10. 4 с.
Kulyk Y. A., Knysh B. P., Maslii R. V., Kvyetnyy R. N., Shcherba V. V., & Kulyk A. I. (2021). METHOD AND GAS DISCHARGE VISUALIZATION TOOL FOR ANALYZING LIQUID-PHASE BIOLOGICAL OBJECTS // Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska 2021. №11(3). Р. 22–29. https://doi.org/10.35784/iapgos.2709
Романий С. Ф. Неразрушающий контроль материалов по методу Кирлиана / С. Ф. Романий, Э. Д. Че-рный. Днепропетровск : Изд-во ДГУ, 1991. 144 с.
Швайко В. В. Лабораторний стенд для збудження і контролю дефектів в коронному розряді / В. В.Швайко В.В., К. М. Божко // Зб. пр. 14-ї Всеукр. наук.-практ. конф. студентів, аспірантів та молодих вчених у приладобудуванні. 4-5 грудня 2018 р., м. Київ. С. 210–213.
Babelyuk V. Y., Dobrovolskiy Y. G., Pidkamin L. I., Popovych I. L., Ushenko Yu. A. Usage of a gas-discharge visualization for an investigation of a human internal energy // Proc. SPIE 11369, Fourteenth International Conference on Correlation Optics, 1136929 (6 February 2020); doi10.1117/12.2553951
Babelyuk V., Tserkovniuk R., Babelyuk N., Zukow X., Ruzhylo S., Dubkova G., Korolyshyn T., Hubyts’kyi V., Kikhtan V., Gozhenko A., & Popovych I. The parameters of gas discharge visualization (biophotonics) correlated with parameters of acupuncture points, EEG, HRV and hormones // Journal of Education, Health and Sport. 2021. №11(12). Р. 359–373. https://apcz.umk.pl/JEHS/article/view/JEHS.2021.11.12.030
Babelyuk V. Y., Popovych I. L., Gozhenko A. I., Dubkova G. I., Kozyavkina O. V., Korolyshyn T. A., Babelyuk N. V., Kovbanyuk M. M., Fihura O. A., Dobrovolskyi Y. G., Zukow W., & Yanchij R. I. (2023). Gas Discharge Vizualization (Electrophotonic Imaging, Kirlianography). Theoretical and Applied Aspects. Feniks. https://doi.org/10.5281/zenodo.7535880
Bista S., Jasti N., Bhargav H., Sinha S., Gupta S., Ramarao P., Chaturvedi S., & Gangadhar B. (2022). Applications of Gas Discharge Visualization Imaging in Health and Disease: A Systematic Review. Alternative Therapies in Health and Medicine, AT6764. PMID: 35648690.
GOZHENKO Anatoliy, ZANTARAIA Toto and ZUKOW Walery. „Falling values”: artifacts or source of unique information? Drastically low electrical conductivity of acupuncture points is accompanied by significant deviations of EEG, HRV, immunity, metabolism and GDV parameters // Quality in Sport. 2024. №17. Р.51006. eISSN 2450–3118. https://dx.doi.org/10.12775/QS.2024.17.004 https://apcz.umk.pl/QS/article/view/51006
Nevoit G., Bumblyte I., Korpan A., Minser O., Potyazhenko M., Iliev M., Vainoras A., & Ignatov I. The Biophoton Emission in Biotechnological and Chemical Research: from Meta-Epistemology and Meaning to Experi-ment. Part 1 // Ukrainian Journal of Physics, 2024. №69(3). Р. 190. https://doi.org/10.15407/ujpe69.3.190
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).