Method for adapting radioacoustic sounding systems of the atmosphere
DOI:
https://doi.org/10.30837/rt.2024.2.217.15Keywords:
remote sensing of the atmosphere, method, algorithm, estimation of parameters, management, filtration, temperature, probing signal, synthesisAbstract
Stations of radioacoustic sounding (RAS) of the atmosphere are a promising means of obtaining information about the altitudinal distribution of meteorological parameters in the Earth's atmosphere used in the process of solving current scientific and applied tasks to ensure aircraft flights, weather forecasting, etc. However, the effectiveness of the existing radio-acoustic means is insufficient, and there are practical needs for the development of appropriate prospective structures and algorithms, which will be implemented during the construction of specific stations designed to solve actual applied tasks.
The article presents the synthesis of the RAS systems algorithm adaptation performed by changing the frequency of the sounding radio signal to fulfill the Bragg condition when the emitted acoustic pulse signal moves along the sounding path from the standpoint of optimal control theory. Since in the problem of synthesizing the algorithm for controlling the frequency of a radio signal, the disturbing and leading to violations of the Bragg condition during the propagation of an acoustic packet along the sounding path, as well as the process causing measurement errors, are considered as random, this problem is considered as a problem of stochastic optimal control.
It is shown that in accordance with the separation theorem, known from the theory of optimal stochastic control, the method of controlling the frequency of a sounding radio signal should include sequentially peformed operations of forming estimates of the information parameter of the scattered radio signal, optimal linear filtering of the obtained estimates, and deterministic control of the frequency of the sounding radio signal.
References
Bradley S. Atmosphere Acoustic Remote Sensing. Principes andApplication. CRC Press. 2007. 267 p.
Kartashov V.M., Tikhonov V.A., Oleinikov V.N. Signal processing in radio electronic systems for re-mote monitoring of the atmosphere. Kharkiv : KNURE, 2014. 312 p.
Карташов В.М. Моделі і методи обробки сигналів систем радіоакустичного і акустичного зонду-вання атмосфери. Харків : ХНУРЕ, 2011. 234 с.
Lataitis R.J. Theory and Application of a radio-acoustic sounding system (RASS): NOAA Technical Memorandum ERL WPL-230. Nat. Oceanic and Atmos. Admin. Environ, Res. Labs. Boulder, CO, 1993, 207 p.
Smith P. L. Remote measurements of wind velocity by the electromagnetic-acoustic probe. 1. System analysis.1961 // Conf. proc. 5th Annu. convention on military electronics, Wash (D.C.), rep № 419, рр. 43–53.
Fetter R. V. Remote measurements of wind velocity by the electromagnetic-acoustic probe. II. Experimental system. 1961 // Conf. proc. 5th Annu. convention on military electronics, Wash (D.C.), rep № 419, рр. 54–59.
Atlas D. Indirect probing techniques // Bull.Ainer.Meteorol.Soc. Vol. 43, № 9, pp. 457–466.
Marshall I.M., Peterson A.M., and Barnes A.A. Combined Radar-Acoustic Sounding System // Appl. Opt., 1972, v.11, №1. рр. 108–112. DOI: 10.1364/AO.11.000108
Ситнік О.В., Карташов В.М. Радіотехнічні системи : навч. посіб. Харків : Сміт, 2009. 448 с.
Chandrasekhar Sarma T. V., Narayana Rao D., Furumoto J., and Tsuda T. Development of radio acoustic sounding system (RASS) with Gadanki MST radar – first results // Ann. Geophys., 26, 2008, pp. 2531–2542. https://doi.org/10.5194/angeo-26-2531-2008
Alexander S. P., Murphy D. J., Klekociuk A. R., High resolution VHF radar measurements of tropopause structure and variability at Davis, Antarctica (69° S, 78° E). Atmos. Chem. Phys., 13, 2013. pp. 3121–3132. doi:10.5194/acp-13-3121-2013
Kartashov V.M. Signal Scattering Functions of Atmospheric Sounding System // Telecommunications and Radio Engineering. 2003, Vol. 59, №7-8-9. Р. 88–94.
Kartashov V.M. Estimation of Signal Parameters Scattered by an Acoustic Wave Packet // Telecommu-nications and Radio Engineering. 2004. Vol. 61, №2. Р. 125–129.
Muradyan P., Richard Coulter R. Radar Wind Profiler (RWP) and Radio Acoustic Sounding System (RASS) Instrument Handbook // March, 2020. Environmental Science Division, Argonne National Laboratory. 20 p. URL: https://www.arm.gov/publications/tech_reports/handbooks/rwp_handbook.pdf.
Бабкін С.І., Куценко В.І., Максимова Н.Г. Оцінка похибки двох методик температурного радіоаку-стичного зондування атмосфери. Експериментальні результати // Радіотехніка. 1988. № 84. С.98–106.
Kartashov V., Babkin S., Kartashov A., Pershyn Y. Development of the Atmosphere Radio-Acoustic Sounding Method in Ukraine and in the World in the Period of 1961-2000 // 2023 IEEE 6th International Confer-ence on Information and Telecommunication Technologies and Radio Electronics, UkrMiCo 2023, 13–15 No-vember 2023, Kyiv, Ukraine. pp. 372–376. DOI: 10.1109/UkrMiCo61577.2023.10380339
Kartashov V., Oleynikov V., Koryttsev I., Sheiko S., Zubkov O., Babkin S. Processing of Wide Band Acoustic Signals During Detection of Unmanned Aerial Vehicles // 2020 IEEE Ukrainian Microwave Week (UkrMW). Kharkiv, Ukraine, September 21 – 25, 2020. Vol. 1 on 2020 IEEE 12th International Conference on Antenna Theory and Techniques (ICATT). Р. 35–39.
Oleksandr Sotnikov, Vladimir Kartashov, Oleksandr Tymochko, Oleg Sergiyenko, Vera Tyrsa, Paolo Mercorelli, Wendy Flores-Fuentes. Methods for Ensuring the Accuracy of Radiometric and Optoelectronic Navi-gation Systems of Flying Robots in a Developed Infrastructure. Chapter 16 // Machine Vision and Navigation. Springer, Cham. Р.537–578.
Developing and Applying Optoelectronics in Machine Vision / O. Sergiyenko, J.C. Rodriguez-Quiñonez. IGI Global, 2016. 341p.
Kartashov V.M., Tikhonov V.A., Voronin V.V. and Tymoshenko L.P. Complex model of random signal in problems of acoustic sounding of atmosphere // Telecommunications and Radio Engineering. 2016. V. 75, Iss. 20. Р.1885–1892.
Піза Д.М. Теорія і проєктування радіолокаційних систем : навч. посіб.. Запоріжжя : ЗНТУ, 2019. 82 с.
Сумик М. М. Основи теорії радіотехнічних систем : навч. посіб. Львів : Львів. політехніка, 2004. 240 c.
Радіоелектронні системи : навч. посіб. / Ю.М. Седишев та ін. Харків : ХУПС, 2010. 360 с.
Радіоелектронні системи : навч. посіб. / П. Ю. Баранов, В. П. Лавриненко, О. М. Мелешкевич, В. С. Дмитренко. Одеса, 2012. 232 с.
Петров В.А., Пилипенко Ю.Л. Радіотехнічні системи. Курсове проєктування : навч. посіб. Харків : ХНУРЕ, 2003. 48 с.
Карташов В.М., Тихонов В.А., Воронін В.В., Тимошенко Л.П. Комплексні моделі випадкових сиг-налів в задачах акустичного зондування атмосфери // Радіотехніка. 2016. Вип. 185. С. 81–86.
Vasilchenko A., Kartashov V.M. Analysis of influence exerted by longitudinal Doppler effect upon output signal of sodar antenna array // Telecommunications and Radio Engineering. Vol.66, Iss. 9. Р. 841–847. DOI: 10.1615/TelecomRadEng.v66.i9.50.
Semenets V. V., Kartashov V.M., Leonidov V. I. Registration of refraction Phenomenon in the Problem of acoustic Sounding of Atmosphere in Airport Zone // Telecommunications and Radio Engineering. 2018. Vol. 77, Iss. 5. Р.461–468. DOI: 10.1615/TelecomRadEng.v77.i5.90.
Карташов В.М., Тихонов В.А., Воронін В.В. Особливості побудови та застосування комплексних систем дистанційного зондування атмосфери // Радіотехніка. 2016. Вип. 186. С. 184–185.
Тютюнник А. Г. Оптимальні і адаптивні системи автоматичного керування : навч. посіб. Житомир : ЖІТІ, 1998. 512 с.
Попович М. Г., Ковальчук О. В. Теорія автоматичного керування. Київ : Либідь, 2007. 656 с.
Самотокін Б. Б. Лекції з теорії автоматичного керування : навч. посіб. Житомир : ЖІТІ, 2001. 508 с.
Бублік Б. Н., Кириченко Н. Ф. Основи теорії управління. К. : Вища шк., 1975. 328 с
Іванов А. О. Теорія автоматичного керування. Дніпропетровськ : Нац. гірнич. ун-т, 2003. 250 с.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).