Methods for logical processing of images of radar objects marks based on semantic features




semantic analysis, radar signal, identification, extended atmospheric formations, aerial object


This paper considers a method for logical processing of radar images based on semantic features. Algorithms and programs for automatic detection and recognition of radar aerial objects in surveillance radars with processing of real signals recordings are also given. The relevance of this work is the development of automatic information processing algorithm to ensure effective detection and recognition of radar object signals based on semantic features. The advantage of this method is the possibility to bring the image processing procedure of radar object images closer to the expert’s logic. It implies involvement in analysis of various distinguishing features between reflections from aerial objects. The problem of detecting and recognizing images of radar objects is transformed into the problem of feature classification. Therefore, the essence of logical image processing method based on semantic features is a making decision about detection and recognition of radar objects based on comparative analysis of features, which are defined on the set of semantic, fluctuation, geometric and energy components of radar image. An algorithm for automatic decision-making on detection and recognition of aircraft radar signals, including point-moving and stationary aircraft such as airplanes, helicopters, UAVs, is given. This approach of forming semantic features of radar signals, as well as the automation of information processing operations, increases the effectiveness of detecting weak signals due to accumulation of signal (energy) and logical information. At the same time, logical information is accumulated from the analysis of dynamic map of radar signal intensities with tracking of changes occurring in it during several radar soundings.


Li Jian Radar Signal Processing and Its Applications / Jian Li, R. Hummel, P. Stoica, E. G. Zelnio. Springer, 2013. 279 p.

Skolnik M. I. (eds) (2021) Radar Handbook, McGraw-Hill, New York.

Russel S. Artificial intelligence. A modern approach, Second Edition / S. Russel, P. Norvig. Williams, 2006. 1410 p.

Бондаренко М. Ф. Теория интеллекта : учебник / М. Ф. Бондаренко, Ю. П. Шабанов-Кушнаренко. Харьков : СМИТ, 2007. 576 с.

Журавлев Ю. И. Об алгебраическом подходе к решению задач распознавания или классификации // Проблемы кибернетики. 2005. Вып. 33. С. 5–68.

Volodymyr Zhyrnov, Svitlana Solonska “Symbolic model of radar images when detecting aircraft”// Telecommunications and Radio Engineering. 2022. Vol. 81, Is. 2. P. 25–35.

Жирнов В.В., Солонская С.В. Предикатная модель процессных знаний при обнаружении и распознавании пачечной структуры сигналов от летательных аппаратов в обзорных РЛС // Радиотехника. 2020. Вып. 201. С 137–144.

Jianping Ou, Jun Zhang, and Ronghui Zhan. Processing Technology Based on Radar Signal Design and Classification // International Journal of Aerospace Engineering. Vol. 2020, рр. 1–19. Article ID 4673763.

Солонская С.В., Жирнов В.В. Предикатная модель процессных знаний при обнаружении и распознавании протяженных объектов типа облака, тучи, «ангел-эхо» в обзорных РЛС // Радиотехника. 2020. Вып. 202. С 164–172.

Zhirnov V.V., Solonskaya S.V. Intelligent system for detection of low-visible air objects in surveillance radars // Telecommunications and Radio Engineering. 2020. Vol. 79, Is. 17. Р. 1513–1519. DOI: 10.1615/TelecomRadEng.v79.i17.20.

Advanced Methods and Deep Learning in Computer Vision.1st Edition / Editors: E. R. Davies, Matthew Turk. Academic Press. 2021. Page Count: 586. ISBN: 9780128221099.



How to Cite

Zhyrnov, V., & Solonska, S. (2024). Methods for logical processing of images of radar objects marks based on semantic features. Radiotekhnika, 1(216), 120–125.