Analysis of the frequency-time structure of acoustic noises of unmanned aerial vehicles in the STM32 CubeIDE environment
DOI:
https://doi.org/10.30837/rt.2023.4.215.11Keywords:
unmanned aerial vehicle, acoustic noise, correlation analysis, signal model, sign, microcontrollerAbstract
The formulation of the task of detecting small unmanned aerial vehicles (drones) is presented, the expediency of building a drone detection system in the stm32 cubeide environment based on the principle of reception and analysis of acoustic signals emitted by drones during their flight mission is substantiated.
The study of temporal fluctuations in the period of acoustic signals of a drone is carried out by the method of model-correlation analysis, as a result of which three-dimensional structures are formed: time – period – correlation coefficient of the acoustic signal with the model in the form of a time-limited sinusoidal function.
The resulting structures are formed as matrices of correlation coefficient values.
The members located along the columns are calculated by time shifting the model function along the signal sample. The members in each column are calculated with a constant period of the model function given from a series of values.
It is shown that the correlation coefficients between the rows of the matrices calculated from drone signals are significantly higher than the same values obtained from background noise measurements. The functions showing the change in time of the correlation coefficients between the rows of the time-period matrix structures for drone signals and background noise do not overlap and show a consistently larger difference in correlation coefficients, which allows us to use the correlation coefficient as a feature that classifies the presence of drone signals.
References
Kloet N. et al. Acoustic signature measurement of small multi-rotor unmanned aircraft systems // International Journal of Micro Air Vehicles. 2017. 9(1). Р.3–14.
Stimpson A. et al. Small UAV Noise Analysis. Humans and Autonomy Laboratory, Duke University, Durham, NC, USA. 2017. April 26, 12 pp. Available at https://hal.pratt.duke.edu/sites/hal.pratt.duke.edu/files/u24/Small_UAV_Noise_Analysis_rqi.pdf.
Leslie A. et al. Broadband noise reduction on a mini-UAV propeller // 14th AIAA/CEAS aeroacoustic conference, Geelong, Victoria, Australia, 2008. Available at https://www.semanticscholar.org/paper/Broadband-Noise-reduction-from-a-mini-UAV-propeller-Auld-Leslie/aa8f1514d96bd711bea00880afdb8050800037bc.
Brown J. What Is A Drone: Main Features and Applications of Today’s Drones. Available at https://www.mydronelab.com/blog/what-is-a-drone.html.
King E., et al. Bee threat elicits alarm call in African elephants // PLoS One. 2010. vol. 5, no. 4. Р. e10346. Available at https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0010346
Anderson K., Gaston K. Lightweight unmanned aerial vehicles will revolutionize spatial ecology // Frontiers in Ecology and the Environment. 2013. vol. 11, no. 3. Р. 138146.
Feight J. (2017). Characterization of a Multi-Rotor SUAS as a First Step Towards Detection and Identification via Acoust. Available at https://shareok.org/handle/11244/300026.
Карташов В. М. Информационные характеристики звукового излучения малых беспилотных лета-тельных аппаратов / В.М. Карташов, С.А. Шейко, С.И. Бабкин, И.В. Корытцев, О.В. Зубков // Радиотехника. 2017. Вып. 191. С. 181–187.
Козерук С. О., Коржик О. В. Виявлення малих лiтальних апаратiв за акустичним випромінюванням // Visnyk NTUU KPI Seriia – Radiotekhnika Radioaparatobuduvannia. 2019. Iss. 76. Р. 15–20.
Semenetz V.V., Leonidov V.I. Model-structural analysis of combination interference in the problems acoustic sounding of the atmosphere // Telecommunications and Radio Engineering. 2019. Vol. 78, Issue 12. P. 1078-1095. DOI: 10.1615/TelecomRadEng.v78.i12.60, pages 1087–1095, 2019.
Леонідов В.І., Семенець В.В. Особенности амплитудно-временной структуры помех в системах акустического зондирования атмосферы // Радиотехника: 2019. Вып. 197. С. 93–99.
Leonidov V.I. Analysis of the models and structure of echo signals of the atmospheric acoustic sounding // Telecommunications and Radio Engineering. 2014. 73(16). Р. 1497–1502.
Семенець В.В., Леонідов В.І. Використання мікроконтролера stm32f407vg для дослідження амплітудно-частотних характеристик біологічних тканин // Радіотехніка: 2023. Вип. 214. С. 94–101.
Програмування мікроконтролерів STM32 в середовищі STM32CubeIDE в прикладах і задачах : навч. посіб. / О. В. Зубков, І. В. Свид, О. В. Воргуль, В. В. Семенець. Дніпро : ЛІРА ЛТД, 2022. 144 с.
В.В. Семенець, В.І. Леонідов. Исследование амплитудно-частотных характеристик биологических тканей // Радіотехніка.зб. 2020. Вип. 203. C. 186–190.
В.В. Семенець, В.І. Леонідов. Аналіз частотно-часової структури акустичних шумів малих автома-тичних аеросистем // Радіотехніка. 2020. Вип. 202. C. 147–152. DOI:10.30837/rt.2020.3.202.15.
Аврунін О.Г., Запорожець О.В., Носова Т.В., Семенець В.В // Микропроцессоры в информационно-измерительных системах : навч. посібник. Харків : ХНУРЕ, 2015. 180c. http://openarchive.nure.ua/handle/document/5291.
Основи реєстрації та аналізу біосигналів : навч. посіб. / О.Г. Аврунін, В.Г. Абакумов, З.Ю. Готра, С.М. Злепко,А.В. Кіпенський, С.В. Павлов, В. В. Семенець. Харків : ХНУРЕ, 2019. 400 с. https://doi.org/10.30837/978-966-659-257-9.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).