Rectennas of electromagnetic power harvesting systems from the surrounding space

Authors

DOI:

https://doi.org/10.30837/rt.2023.4.215.09

Keywords:

wireless power transmission, wireless power transmission technologies, wireless power transmission system, power harvesting from the surrounding space, rectenna, radiator, rectification scheme, metasurface

Abstract

Progress in the development of rectenna systems for collecting/harvesting and converting the power of electromagnetic (ЕМ) fields created by radio-electronic means of various classes and purposes into direct current (DC) are considered. The article consists of two parts, each of which highlights important aspects of this topic.

The main parameters of rectennas and the mechanisms of power loss in them are considered in the first part of the article. This allows us to understand the physical and technical limitations that have to be faced in the development of effective ЕМ power harvesting systems.

The second part of the article considers typical schemes of rectennas for use in various applications. Features of the technical implementation of single-band rectennas, options for minimizing their dimensions and the construction of electrically small rectennas based on metasurfaces are given. Schemes of constructions of rectenna arrays and their advantages and disadvantages are also presented. Special attention in the article is paid to multi-band and wide-band rectennas. It is noted that such rectennas can store more energy and produce higher output DC power compared to narrowband rectennas. The design features of low-power rectifiers for rectennas of EM power harvesting systems from the surrounding space are considered.

It was determined that the energy characteristics of rectannas are characterized by numerous factors and there are three approaches to their improvement. The first approach is to improve the parameters of individual rectifier elements, the second is to optimize the parameters of individual rectenna elements and the third is to optimize the entire rectenna as a whole.

References

Шокало В.М., Лучанинов А.И., Рыбалко А.М., Грецких Д.В. Крупноапертурные антенны-выпрямители систем беспроводной передачи энергии микроволновым лучом. Харьков : Коллегиум, 2006. 308 с.

Алєксєєв В.О., Грецьких Д.В., Гавва Д.С., Лихограй В.Г. Технології безпровідної передачі енергії // Радіотехніка. 2022. №211. C. 114–133.

Гавва Д.С., Грецких Д.В., Гомозов А.В., Пунин Д.В. Электродинамические устройства на основе ра-диоэлементов и материалов с нелинейными характеристиками // Технология приборостроения. 2018. № 2. С. 17–31.

Гавва Д.С., Грецких Д.В., Гомозов А.В., Преснякова А.Д. Электродинамические устройства с нелинейными характеристиками // Технология приборостроения. 2019. № 1. С. 20–35.

Wagih M., Weddell A.S., Beeby S. Rectennas for Radio-Frequency Energy Harvesting and Wireless Power Transfer: A Review of Antenna Design // IEEE Antennas and Propagation Magazine. 2020. Vol. 62, Is. 5. P. 95–107.

Adami S.-E., Proynov P., Geoffrey S. et al. A Flexible 2.45-GHz Power Harvesting Wristband With Net System Output From −24.3 dBm of RF Power // IEEE Transactions on Microwave Theory and Techniques. 2018. Vol. 66, No. 1.P. 380–395.

Zhang Y., Shen S., Chiu C.Y., Murch R.Hybrid RF-Solarenergy Harvesting Systems Utilizing Transparent Multiport Micromeshed Antennas // IEEE Transactions on Microwave Theory and Techniques. 2019. Vol. 67, No. 11.P. 4534–4546.

Wagih M., Weddell A.S., Beeby S. Meshed High-Impedance Matching Network-FreeRectenna Optimized for Additive Manufacturing // IEEE Open Journal of Antennas and Propagation. 2020. Vol. 1. P. 615–626.

LiX., XiaoH., Zhang H. et al. A High Gain Flexible Receiving Antenna for Microwave Wireless Power Transmission. Authorea. 2022. P. 1–3.

Eid A., Hester J., Costantine J.et al.A Compact Source-Load Agnostic Flexible Rectenna Topology for IoT Devices // IEEE Transactions on Antennas and Propagation. 2020. Vol. 68, Is. 4. P. 2621–2629.

Wagih M., Weddell A.S., Beeby S. Omnidirectional Dual-Polarized Low-Profile TextileRectenna With Over 50% Efficiency forSub-μW/cm2 Wearable Power Harvesting // IEEE Transactionson Antennasand Propagation. 2021. Vol. 69, No. 5. P. 2522–2536.

Wagih M., Weddell A.S., Beeby S.High-Efficiency Sub-1 GHz Flexible Compact Rectenna Basedon Parametric Antenna-Rectifier Co-Design // Proceedings of 2020IEEE/MTT-S International Microwave Symposium (IMS). 2020. P.1–4.

Arrawatia M., Baghini M.S., Kumar G. Differential Microstrip Antenna for RF Energy Harvesting // IEEE Transactions on Antennas and Propagation. 2015. Vol. 63, Is. 4. P. 1581–1588.

WeiL.Q., YinZ.X.Differential Rectifier Using Resistance Compression Network for Improving Efficiency Over Extended Input Power Range // IEEE Transactions on Microwave Theoryand Techniques. 2016. Vol. 64, No. 9. P. 2943–2954.

Hucheng S.An Enhanced Rectenna Using Differentially-Fed Rectifier for Wireless Power Transmission // IEEE Antennas and Wireless Propagation Letters. 2015. Vol. 15. P. 32–35.

Zhang H., Zhong Z., GuoY.-X., WuW.Differentially-Fed Charge Pumping Rectifier Design with An Enhanced Efficiency for Ambient RF Energy Harvesting // Proceedings of 2017 IEEE MTT-S International Microwave Symposium (IMS). 2017. P.613–616.

Vyas R.J., Cook B.B., Kawahara Y., Tentzeris M.M. E-WEHP: A Batteryless Embedded Sensor-Platform Wirelessly Powered From Ambient Digital-TV Signals // IEEE Transactions on Microwave Theory and Techniques. 2013. Vol. 61, No. 6.P. 2491–2505.

Furuta T., Ito M., Nambo N. et al. The 500MHz Band Low Power Rectenna for DTV in the Tokyo Area // Proceedings of 2016 IEEE Wireless Power Transfer Conference (WPTC). 2012. P. 1–3.

Noguchi A., Arai H. SmallL oop Rectennafor RF Energy Harvesting // Proceedings of2013 Asia-Pacific Microwave Conference Proceedings (APMC). 2013. P. 1–3.

John V., Chi-Chi C., Kyohei F. Small Antennas: Miniaturization Techniques&Applications. New York, NY, USA: McGraw-Hill, 2009.

Ouedraogo R.O., Rothwell E.J., Diaz A.R., Fuchi K., Temme A. Miniaturization of Patch Antennas Using a Metamaterial-Inspired Technique // IEEE Transactions on Antennas and Propagation. 2012. Vol. 60, No. 5. P. 2175–2182.

Ghosh B., Haque S.M., Mitra D. Miniaturization of Slot Antennas Using Slit and Strip Loading // IEEE Transactions on Antennas and Propagation. 2011. Vol. 59, No. 10. P. 3922–3927.

Takacs A., Fonseca N.J.G., Aubert H.Height Reduction of the Axial-Mode Open-Ended Quadrifilar Helical Antenna // IEEE Antennas and Wireless Propagation Letters. 2010. Vol. 9. P. 942–945.

Valleau J., Aubert H., Bellion A. et al. Resonant Metallic Rings With Irregular Contours for Spiral Antennas Miniaturization // Proceedings of IEEE Conference Antenna Measurements & Applications (CAMA), Juan-les-Pins, France. 2014, P. 1–4.

Gaetano M.The Art of UHF RFID Antenna Design: Impedance-Matching and Size-Reduction Techniques // IEEE Antennas and Propagation Magazine. 2008. Vol. 50, Is. 1. P. 66–79.

Talla V., Kellogg B., Gollakota S., Smith J.R. Battery-Free Cellphone // Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2017. Vol. 1, Is. 2. P. 1–20.

Ho D.K., Ngo V.D., Kharrat I.et al.A Novel Dual-Band Rectenna for Ambient RF Energy Harvesting at GSM 900 MHz and1800 MHz // Advances in Science, Technology and Engineering Systems. 2017. Vol. 2, Is. 3. P. 612–616.

Okba A., Takacs A., Aubert H. Compact Rectennasfor Ultra-Low-Power Wireless Transmission Applica-tions // IEEE Trans. Microw. TheoryTechn. 2019. Vol. 67, No. 5.P. 1697–1707.

Zeng M., Andrenko A.S., Liu X. et al.A Compact Fractal Loop Rectenna for RF Energy Harvesting // IEEE Antennas Wireless Propagation Letters. 2017. Vol. 16. P. 2424–2427.

Shi Y., Jing J., Fan Y., Yang L., Wang M. Design of a Novel Compact and Efficient Rectenna for WiFi Energy Harvesting // Prog. Electromagn. Res.2018. Vol. 83. P. 57–70.

Liu C., Guo Y.X., Sun H., Xiao S. Design and Safety Considerations of an Implantable Rectenna for Far-Field Wireless Power Transfer // IEEE Transactions on Antennas and Propagation. 2014. Vol. 62, Is. 11. P. 5798–5806.

GuX., HemourS., GuoL., WuK. Integrated Cooperative Ambient Power Harvester Collect in Gubiquitous Radio frequency and Kinetic Energy // IEEE Transactions on Microwave Theory and Techniques. 2018. Vol. 66, Is. 9.P. 4178–4190.

Hosain M.K., Kouzani A.Z., Tye S.J. etal. Development of a Compact Rectenna for Wireless Powering of a Headm ountable Deep Brain Stimulation Device // IEEE Journal of Translational Engineering in Health and Medicine. 2014. Vol. 2. P. 1–13.

Quddious A., Zahid S., Tahir F.A. et al. Dualband Compact Rectenna for UHF and ISM Wireless Power Transfer Systems // IEEE Transactions on Antennas and Propagation. 2021. Vol. 69, Is. 4. P. 2392–2397.

Eid A., Hester J.G.D, Costantine J. at al. A Compact Source-Load Agnostic Flexible Rectenna Topology for IoT Devices // IEEE Transactions on Antennas and Propagation. 2020. Vol. 68, Is. 4. P. 2621–2629.

Chuma E.L., RodríguezL.D.L.T., Iano Y. etal. Compact Rectenna Based on a Fractal Geometry With a High Conversion Energy Efficiency Per Area // IET Microwaves, Antennas & Propagation. 2018. Vol. 12. Is. 2. P. 173–178.

Shrestha S., Lee S.R., Choi D.Y. A New fFractal-Based Miniaturized Dual Band Patch Antenna for RF Energy Harvesting // International Journal of Antennas and Propagation. 2014. Vol. 2014. P. 1–9.

Bakogianni S., Koulouridis S. A Dual-Band Implantable Rectenna For Wireless Data and Power Support at Sub-GHz Region // IEEE Transactions on Antennas and Propagation.2019. Vol. 67. Is. 11. P. 6800–6810.

Cheng H.W., Yu T.C., Luo C.H. Direct Current Driving Impedance Matching Method for Rectenna Using Medical Implant Communication Service Band for Wireless Bcharging // IET Microwaves, Antennas & Propagation. 2013. Vol. 7, Is. 4. P. 277–282.

Assimonis S.D., Fusco V., GeorgiadisA., Samaras T. Efficientand Sensitive Electrically Small Rectenna for Ultra-Low Power RF Energy Harvesting // Scientific Reports. 2018. Vol. 8, Is. 1.P.1–12.

Amer A.A.G., Sapuan S.Z., Nasimuddin N. et al. A Comprehensive Review of Metasurface Structures Suitable for RF Energy Harvesting // IEEE Access. 2020. Vol. 8. P. 76433–76452.

Eteng A.A., Goh H.H., Alomainy S.-K.A.-R.A.A Review of Metasurfaces for Microwave Energy Transmission and Harvesting in Wireless Powered Networks // IEEE Access. 2021. Vol. 9. P. 27518–27539.

Aldhaeebi M.A., Almoneef T.S. Highly Efficient Planar Metasurface Rectenna // IEEE Access. 2020. Vol. 8. P. 214019–214029.

Tang M.C., Wang H., Ziolkowski R.W. Design and Testing of Simple, Electrically Small, Low-Profile, Huygens Source Antennas With Broadside Radiation Performance // IEEE Transactions on Antennas and Propagation. 2016. Vol. 64, Is. 11. P. 4607–4617.

Lin W., Ziolkowski R.W. High Performance Electrically Small Huygens Rectennas Enable Wirelessly Powered Internet of Things Sensing Applications: A Review // Engineering. 2022. Vol. 11. P. 42–59.

Шокало В.М., Правда В.І., Усін В.А., Вунтесмері В.С., Грецьких Д.В. Електродинаміка та поширення радіохвиль. Ч.2. Випромінювання та поширення електромагнітних хвиль. Харків : Колегіум, 2010. 435 с.

Lin W., Ziolkowski R.W., Huang J. Electrically Small, Low Profile, Highly Efficient, Huygens Dipole Rectennas For Wirelessly Powering Internet-of-Things (IoT) Devices // IEEE Transactions on Antennas and Propagation. 2019. Vol. 67, Is. 6. P. 3670–3679.

Lin W., Ziolkowski R.W. Wirelessly Powered Light and Temperature Sensors Facilitated by Electrically Small Omnidirectional and Huygens Dipole Antennas // Sensors. 2019. Vol. 19, Is. 9.

Lin W., Ziolkowski R.W. Electrically Small Huygens Antenna-Based FullyIntegrated Wireless Power Transfer and Communication System // IEEE Access. 2019. Vol. 7. P. 39762–39769.

PonnimbadugeP.T.D., Jayakody D.N.K., Sharma S.K. et al. Simultaneous Wireless Information and Power Transfer (SWIPT): Recent Advance Sandfuture Challenges // IEEE Communications Surveys & Tutorials. 2018. Vol. 20, Is. 1. P. 264–302.

Massa A., Oliveri G., Viani F., Rocca P. Array Designs for Long-Distance Wireless Power Transmission: State-of-the-Art and Innovative Solutions // Proceedings of the IEEE. 2013. Vol. 101, No 6. P. 1464–1481.

Shen S., Zhang Y., Chiu C.-Y., Murch R.A. Triple-Band High-Gain Multibeam Ambient RF Energy Harvesting System Utilizing Hybrid Combining // IEEE Transactionson Industrial Electronics.2020. Vol. 67, Is. 11. P. 9215–9226.

Li L., Zhang X., Song C. et al. Compact Dual-Band, Wide-Angle, Polarization-Angle-Independent Rectifying Metasurface for Ambient Energy Harvesting and Wireless Power Transfer // IEEE Transactions on Microwave Theory and Techniques. 2021. Vol. 69, No. 3. P. 1518–1528.

Kalaagi M., Seetharamdoo D. Enhancing the Power Level Harvested by Rectenna Systems Based on Focusing Metasurfaces for Ambient Environments // Journal of Applied Physics. 2022. Vol. 132, Is. 22. P. 1–8.

Song C., Huang Y., Zhou J.et al. A High-Efficiency Broadband Rectenna for Ambient Wireless Energy Harvesting // IEEE Transactions on Antennas and Propagation. 2015. Vol. 63, No. 8. P. 3486–3495.

Pinuela M., Mitcheson P.D., Lucyszyn S. Ambient RF Energy Harvestingin Urbanand Semiurban Environments // IEEE Transactions on Microwave Theory and Techniques. 2013. Vol. 61, No. 7. P. 2715–2726.

Lu P., Song C., Huang K.M. Ultra-Wideband Rectenna Using Complementary Resonant Structure for Microwave Power Transmission and Energy Harvesting // IEEE Transactions on Microwave Theory and Techniques. 2021.Vol. 69, No. 7. P. 3452–3462.

Nie M.-J., Yang X.-X., Tan G.-N., Han B. A Compact 2.45-GHz Broadband Rectenna Using Grounded Coplanar Waveguide // IEEE Antennas and Wireless Propagation Letters. 2015. Vol. 14. P. 986–989.

Kuhn V.,Lahuec C., Seguin F., Person C. A Multi-Band Stacked RF Energy Harvester With RF-to-DC Efficiency Upto 84% // IEEE Transactionson Microwave Theory and Techniques. 2015. Vol. 63, Is. 5. P. 1768–1778.

Song C., Huang Y., Carter P. et al. A Novel Six-band Dual CP Rectenna Using Improved Impedance Matching Technique for Ambient RF Energy Harvesting // IEEE Transactions on Antennas and Propagation. 2016. Vol. 64, Is. 7. P. 3160–3171.

Karakaya E., Bagci F., Yilmaz A.,Akaoglu B. Metamaterial-Based Four-Band Electromagnetic Energy Harvesting at Commonly Used GSM and Wi-Fi Frequencies // Journal of Electronic Materials. 2019. Vol. 48. P. 2307–2316.

Benayad A.,Tellache M. A Compact Energy Harvesting Multiband Rectenna Based on Metamaterial Complementary Split Ring Resonator Antenna and Modified Hybrid Junction Ring Rectifier // International Journal of RF and Microwave Computer-Aided Engineering. 2019. Vol. 30, Is. 2.P.1–11.

Wang M., Fan Y., Yang L. et al. Compact Dual-Band Rectenna for RF Energy Harvest Based on a Tree-Like Antenna // IET Microwaves, Antennas &Propag., 2019. Vol. 13, Is. 9. P. 1350–1357.

Shrestha S., Lee S.R., ChoiD.-Y. A New Fractal-Based Miniaturized Dual Band Patch Antenna for Ration Energy Harvesting // International Journal of Antennas and Propagation. 2014. Vol. 8. P.1–9.

Badamchi Z., Trinh N.D., Bois C., Djera T. Printed Fractal Folded Coplanar-Strips-Fed Array Rectenna for IoE Applications // Progress In Electromagnetics Research. 2022. Vol. 125. P. 161–177.

Estrada J.A., Kwiatkowski E., López-Yela A. et al.RF-Harvesting Tightly Coupled Rectenna Array Tee-Shirt With Greater Than Octave Bandwidth // IEEE Transactions on Microwave Theory and Techniques. 2020. Vol. 68, Is. 9. P. 3908–3919.

Khalid F., Saeed W., Shoaib N. et al. Quad-Band 3D Rectenna Array for Ambient RF Energy Harvesting // International Journal of Antennas and Propagation. 2020. Vol. 2020. P.1–23.

Bui D.H.N., Vuong T.-P., Verdier J., Allard B.,Benech P. Design and Measurement of 3D Flexible Antenna Diversity for Ambient RF Energy Scavenging in Indoor Scenarios // IEEE Access. 2019. Vol. 7. P. 17033–17044.

Song C., Huang Y., Zhou J. et al. Matching Network Elimination in Broadband Rectennas for High-Efficiency Wireless Power Transfer and Energy Harvesting // IEEE Transactions on Industrial Electronics. 2017. Vol. 64, Is. 5. P. 3950–3961.

He Z., Lin H., Liu C. Codesign of a Schottky Diode’s and Loop Antenna’s Impedances for Dual-Band Wireless Power Transmission // IEEE Antennas and Wireless Propagation Letters. 2020. Vol. 19, No. 10. P. 1813–1816.

Kuhn V.,Lahuec C., Seguin F., Person C. A Multi-Band Stacked RF Energy Harvester With RF-to-DC Efficiency Upto 84 % // IEEE Transactionson Microwave Theory and Techniques. 2015. Vol. 63, Is. 5, P. 1768–1778.

Ma Z.K., Vandenbosch G.A.E. Wideband Harmonic Rejection Filtennafor Wireless Power Transfer // IEEE Transactions on Antennas Propagation. 2013. Vol.62, No. 1. P. 371–377.

Chou J.-H., Lin D.-B., Weng K.-L., Li H.-J. All Polarization Receiving Rectenna With Harmonic Rejection Property for Wireless Power Transmission // IEEE Transactionson Antennas and Propagation. 2014. Vol. 62, No. 10.P. 5242–5249.

Dong Y., Gao S., Luo Q.et al. Broadband Circularly Polarized Filtering Antennas // IEEE Access. 2018. Vol. 6. P. 76302–76312.

Finkenzeller K. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification. New York : Wiley, 2003.

Yao Y., Wu J., Shi Y., Dai F. A Fully Integrated 900-MHz Passive RFID Transponder Front End With Novel Zero-Threshold RF-DC Rectifier // IEEE Transaction on Industrial Electronics. 2009. Vol. 56, No. 7. P. 2317–2325.

Wang W., Wong H., Han Y.A High-Efficiency Full-Wave CMOS Rectifying Charge Pump for RF Energy Harvesting Applications // Microelectronics Journal. 2015. Vol. 46, Is. 12, Part B. Р. 1447–4452.

Valenta C.R., Durgin G.D. Harvesting Wireless Power: Survey of Energy-Harvester Conversion Efficiency in Far-Field, Wireless Power Transfer Systems // IEEE Microwave Magazine. 2014. Vol. 15, Is. 4. P. 108–120.

Published

2023-12-25

How to Cite

Alieksieiev, V., Gretskih, D., Gavva, D., Lykhograi, V., & Khan, I. (2023). Rectennas of electromagnetic power harvesting systems from the surrounding space. Radiotekhnika, 4(215), 86–105. https://doi.org/10.30837/rt.2023.4.215.09

Issue

Section

Articles