Using coherent processing algorithms for direction finding of UAV acoustic signals

Authors

DOI:

https://doi.org/10.30837/rt.2023.3.214.07

Keywords:

unmanned aerial vehicle, coherent processing, direction finding station, acoustic array, signal processing

Abstract

Small UAVs are often used in a group, since their signals are highly correlated, their resolution is reduced when using non-coherent processing.

The article analyzes the well-known methods of coherent processing of acoustic signals in order to increase the resolution in the direction finding of signals with a high degree of correlation. Obtaining qualitative indicators of the analyzed algorithms was carried out by the method of statistical computer modeling in the Matlab environment.

Based on the simulation results, it is shown that coherent signal processing methods are the most stable in conditions of low signal-to-noise ratios, while non-coherent ones show the best results in the region of high signal-to-noise ratio, while coherent algorithms can potentially distinguish more targets. the WAVES coherent algorithm performs better in the high signal-to-noise ratio region, but loses to the CSSM algorithm in the low signal-to-noise region.

To increase the efficiency of coherent processing of multipath signals, it applies spatial filtering of the inputsignal.

References

Królikowski, Hubert. (2022). The Use of Unmanned Aerial Vehicles in Contemporary Armed Conflicts – Selected Issues. Politeja. 19. 10.12797/Politeja.19.2022.79.02.

Adam Lowther, Mahbube K.S. Combat Drones in Ukraine // Air & Space Operations Review 2022 / Vol. 1, No. 4, WINTER 2022

Карташов В. М., Олейников В. Н., Шейко С. А., Бабкин С. И., Корытцев И. В., Зубков О. В. Особенности обнаружения и распознавания малых беспилотных летательных аппаратов // Радиотехника. 2018. Вып. 195. С. 235–243.

Олейников В.Н., Зубков О.В, Карташов В.М., Корытцев И.В., Бабкин С.И., Шейко С.А, Селезнев И.С. Экспериментальная оценка эффективности аглоритмов пеленгования беспилотных летательных аппаратов по акустическому излучению // Радиотехника. 2019. Вып. 199. С. 29–37.

Карташов В.М., Корытцев И.В, Олейников В.Н., Зубков О.В., Корытцев И.В., Бабкин С.И., Шейко С.А., Селезнев И.С. Алгоритмы пеленгации беспилотных летательных аппаратов по их акустическому излучению // Радиотехника. 2019. Вып. 196. C. 22–31.

Карташов В.М., Олейников В.Н., Воронин В.В., Рябуха В.П., Капуста А.И., Рыбников Н.В., Селезнев И.С. Методы комплексной обработки и интерпретации радиолокационных, акустических, оптических и инфракрасных сигналов беспилотных летательных аппаратов // Радиотехника. 2020. Вып. 202. С. 173–182.

Kartashov V., Oleynikov V., Koryttsev I., Sheiko S., Zubkov O., Babkin S. Processing of Wide Band Acoustic Signals During Detection of Unmanned Aerial Vehicles // 2020. IEEE Ukrainian Microwave Week (UkrMW). Kharkiv, Ukraine, September 21 – 25. Vol. 1 on 2020 IEEE 12th International Conference on Antenna Theory and Techniques (ICATT). Р. 35–39.

Oleynikov V.N., Kartashov V.M., Babkin S. I., Zubkov O.V., Korytsev I.V., Sheiko S.A., Seleznov I.S. Structure and Parameter Unmanned Aerial Vehicles Sound Fields // Telecommunications and Radio Engineering. 2020. Vol. 79, №17. P.1539–1550.

Kartashov V.M., Oleynikov V.N, Zubkov O.V., Korytsev I.V., Babkin S. I., Sheiko S.A. Kolendovskaya M.M. Spatial-temporal Processing of acoustic Signals of Unmanned Aerial Vehicles // Telecommunications and Radio Engineering. 2020. Vol. 79, №9. P. 769–780.

T. Engin Tuncer, Benjamin Friedlander / Classical and Modern Direction-of-Arrival Estimation, 2009.

Mitch Campion, Prakash Ranganathan, and Saleh Faruque. 2018. UAV swarm communication and control architectures: a review // Journal of Unmanned Vehicle Systems. 7(2): 93–106. https://doi.org/10.1139/juvs-2018-0009

Карташов В.М. Рибников М.В., Карташов О.В., Посошенко В.О. Аналіз методів акустичної пеленгації безпілотних літальних апаратів // Радіотехніка. 2022. Вип. 210. C. 104–112.

Pillai S. U. and Kwon B. H. Forward/backward spatial smoothing techniques for coherent signal identification // IEEE Transactions on Acoustics, Speech, and Signal Processing. 1989. Vol. 37, no. 1. P. 8–15, Jan., doi: 10.1109/29.17496.

Wang H., Kaveh M. Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources // IEEE Trans. Acoust., Speech, Signal Process. 1985. Vol. 33, Nо. 4. P. 823–831.

Schmidt R. Multiple emitter location and signal parameter estimation // IEEE Trans. Antennas Propag. 1986. Vol. 34, Nо. 3. P. 276–280,

Wong K. T. and Zoltowski M. D. Uni-vector-sensor ESPRIT for multisource azimuth, elevation, and polarization estimation // IEEE Transactions on Antennas and Propagation. 1997. Vol. 45, No. 10. P. 1467–1474, Oct., doi: 10.1109/8.633852.

Wang Ben, Wang Wei, Gu Yujie, Lei Shujie. Underdetermined DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Array // Sensors. 2017, 17, 702.

E. D. di Claudio, R. Parisi. WAVES: Weighted average of signal subspaces for robust wideband direction finding // IEEE Trans. Signal Process. 2001. Vol. 49, Nо. 10. Р.2179–2191.

Clark B. G. An efficient implementation of the algorithm 'CLEAN // Astronomy and Astrophysics. 1980. 89: 377.

Published

2023-09-29

How to Cite

Kartashov, V., & Rybnykov, M. (2023). Using coherent processing algorithms for direction finding of UAV acoustic signals. Radiotekhnika, 3(214), 85–93. https://doi.org/10.30837/rt.2023.3.214.07

Issue

Section

Articles