Analysis of DSTU 8961:2019 in the quantum random oracle model


  • S.O. Kandii Харківський національний університет імені В. Н. Каразіна, АТ «Інститут Інформаційних технологій», Ukraine
  • I.D. Gorbenko Харківський національний університет імені В.Н. Каразіна, АТ «Інститут інформаційних технологій», Ukraine



post-quantum cryptography, quantum random oracle model, provable security, key encapsulation mechanisms, formal security analysis


Modern cryptographic transformations require provable security against a relatively wide class of threats. Typically, such evidentiary security is achieved through formal analysis within the chosen security model. The development of quantum computers led to the emergence of new attack vectors to which classical cryptography was vulnerable. However, there are cryptographic systems that are considered resistant to quantum attacks and some of them are even standardized. The formal analysis of such systems has faced difficulties for a long time, which were associated with the impossibility of applying classical methods of proof to formal models that take into account quantum effects. However, in recent years, many new results have appeared that allow obtaining formal security proofs for quite complex cryptographic transformations, and most of the existing post-quantum asymmetric encryption and key encapsulation schemes currently have corresponding formal proofs within the quantum random oracle model, the most widespread security model for of post-quantum cryptography. DSTU 8961:2019 is the Ukrainian post-quantum standard for asymmetric encryption and key encapsulation. However, security proofs in the quantum random oracle model have not yet been published for it. As part of this work, security evidence was obtained for the design of the key encapsulation mechanism described in DSTU 8961:209. The obtained result is generalized for an arbitrary asymmetric encryption scheme, which may contain decryption errors and can be used to assess the security of not only DSTU 8961:2019, but also other similar asymmetric transformations.


Горбенко І. Д., Горбенко Ю. І. Прикладна криптологія. Теорія. Практика. Застосування : монографія. Харків : Форт, 2012. 880 с.

Bellare S., Rogaway P. Random oracles are practical: a paradigm for designing eifficient protocols. ACM 1993

Boneh D., Dagdelen Ö., Fischlin M., Lehmann A., Schaffner C., Zhandry M. Random oracles in a quantum world // ASIACRYPT 2011. P. 41–69

Zhandry M. How to record quantum queries, and applications to quantum indifferentiability // CRYPTO 2019. P. 239–268.

Hofheinz D., Hovelmanns K., Kiltz E. A modular analysis of the fujisaki-okamoto transformation // Lecture Notes in Computer Science. 2017. Vol. 10677. P. 341–371.

Dent A. A Designer’s Guide to KEMs. Cryptography and Coding. Cryptography and Coding, 2003. Vol 28. P. 29-56.

Saito T., Xagawa K., Yamakawa T. Tightly-Secure Key-Encapsulation Mechanism in the Quantum Random Oracle Model // EUROCRYPT 2018 . EUROCRYPT 2018.

ДСТУ 8961:2019. Інформаційні технології. Криптографічний захист інформації. Алгоритми асиметричного шифрування та інкапсуляції ключів. Чинний від 21.12.2019. Вид. офіц. Київ : УкрНДНЦ, 2019. 72 с.

Hoffstein J., Pipher J., Silverman H. NTRU: a ring based public key cryptosystem // Algorithmic Nuber Theory. Third International Symposium. 1998. P. 267–288.

Bindel N., Hamburg M., Hövelmanns K., Hülsing A., Persichetti E. Tighter proofs of CCA security in the quantum random oracle model // Dennis Hofheinz and Alon Rosen, editors. TCC 2019. P. 61–90.

Don J., Fehr S., Majenz C., Schaffner C. Online-Extractability in the Quantum Random-Oracle Model // EUROCRYPT 2022.



How to Cite

Kandii, S., & Gorbenko, I. (2023). Analysis of DSTU 8961:2019 in the quantum random oracle model. Radiotekhnika, 3(214), 7–16.