Comparative analysis of the quality of detection of air objects by secondary radar systems

Authors

DOI:

https://doi.org/10.30837/rt.2023.2.213.09

Keywords:

radar system, airspace, surveillance system, analysis, quality, detection, secondary radar system, detection threshold, response signal, request signal

Abstract

The work is devoted to a comparative analysis of the quality of detection of air objects by secondary radar systems. The purpose of the work is a comparative analysis of the optimal and quasi-optimal structure for detecting air objects by secondary interrogation radar systems. A significant role in the information support of the airspace control and air traffic control system is played by secondary radar systems for airspace surveillance, which include secondary radars and identification problems on the basis of “friend or foe” identification. Note that in existing networks of radar surveillance systems, tracking of airborne objects is usually carried out using information from primary radar surveillance systems, and secondary radar surveillance systems are used as sources of additional radar information. In this regard, the problems of assessing the quality of detection of air objects by secondary radar systems, the specifics of the construction and operation of which differ significantly from the primary airspace surveillance radar systems, are relevant. Thus, increasing the probabilistic characteristics of the system of secondary radar systems when an aircraft transponder operates in the field of significant flows of intentional and intra-system interference is ensured by choosing detection thresholds depending on the values of the transponder readiness coefficient and the probability of suppression of individual response signal pulses. On the other hand, the use of detection thresholds on secondary radar systems that are optimal for the given operating conditions of the transponder makes it possible to reduce the requirements for the throughput of the aircraft transponder with a significant intensity of flows of intra-system and intentional correlated interference. Analysis of the characteristics of detection of air objects by secondary radar systems shows that: optimal thresholds for detecting air objects in secondary radar systems significantly depend on the readiness factor of the aircraft transponder and the probability of suppression of individual pulses of response signals in the response channel; the use of decoding response signals and subsequent accumulation when choosing the optimal threshold significantly reduces the detection quality indicators compared to optimal processing of a burst of response signals; the digital threshold for detecting air objects in a secondary radar system largely depends on the probability of signal suppression in the request channel and response channel.

References

M. Leonardi and D.D. Fausto. Secondary Surveillance Radar Transponders classification by RF fingerprinting // 2018 19th International Radar Symposium (IRS), 2018, pp. 1–10. doi: 10.23919/IRS.2018.8448244.

M. Skolnik. Improvements for air-surveillance radar // Proceedings of the 1999 IEEE Radar Conference. Radar into the Next Millennium (Cat. No.99CH36249), 1999, pp. 18–21. doi: 10.1109/NRC.1999.767195.

I. Obod, I. Svyd, O. Maltsev and S. Starokozhev. The Effect of Masking Interference on the Quality of Request Signal Detection in Aircraft Responders of the Identification Friend or Foe Systems // 2020 IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T), 2020, pp. 721–726. doi: 10.1109/PICST51311.2020.9467955.

F. L. Neindre, G. Ferre, D. Dallet, F. Letellier and K. Pitois. A Successive Interference Cancellation-based Receiver for Secondary Surveillance Radar // IEEE Transactions on Aerospace and Electronic Systems, 2022. doi: 10.1109/TAES.2022.3193649.

M. Barbary, A. S. Hafez and T. Crew. An Industrial Design and Implementation Approach of Secondary Surveillance Radar System // 2021 International Telecommunications Conference (ITC-Egypt), 2021, pp. 1–9. doi: 10.1109/ITC-Egypt52936.2021.9513961.

О.П. Черних, І.І. Обод, І.В.Свид. Інформаційне забезпечення на основі мереж спостереження повітряного простору // Eastern-European Journal of Enterprise Technologies, 2/9(50) 2011. Харків, 2011. С. 23–25. doi: 10.15587/1729-4061.2011.1850.

I. Svyd et al. Fusion of Airspace Surveillance Systems Data // 2019 3rd International Conference on Advanced Information and Communications Technologies (AICT), 2019. doi :10.1109/aiact.2019.8847916

I. Svyd, I. Obod, O. Maltsev, V. Andrusevich, B. Bakumenko and O. Vorgul. Optimal Measurement of Signal Data Parameters of Requesting Radar Systems // 2021 IEEE 3rd Ukraine Conference on Electrical and Computer Engineering (UKRCON), 2021, pp. 138–141. doi: 10.1109/UKRCON53503.2021.9575235.

I. Svyd, I. Obod, O. Maltsev and A. Hlushchenko. Secondary Surveillance Radar Response Channel Information Security Improvement Method // 2020 IEEE 11th International Conference on Dependable Systems, Services and Technologies (DESSERT), 2020, pp. 341–345. doi: 10.1109/DESSERT50317.2020.9125018.

Свид І. В. Обробка радіолокаційної інформації систем спостереження повітряного простору : монографія. / І. В. Свид. Дніпро : ЛІРА ЛТД, 2022. 224 с.

Y. Jiang, Z. Yang, C. Bo, and D. Zhang. Continuous IFF response signal recognition technology based on capsule network // Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 2021, pp. 455–468. doi: 10.1007/978-3-030-90196-7_39.

I. Svyd, I. Obod and O. Maltsev. Interference Immunity Assessment Identification Friend or Foe Systems // Ageyev D., Radivilova T., Kryvinska N. (eds) Data-Centric Business and Applications. Lecture Notes on Data Engineering and Communications Technologies, vol 69. Springer, Cham, pp. 287–306, 2021. doi: 10.1007/978-3-030-71892-3_12.

T. M. Schuck, B. Shoemaker and J. Willey. Identification friend-or-foe (IFF) sensor uncertainties, ambiguities, deception and their application to the multi-source fusion process // Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093), 2000, pp. 85–94. doi: 10.1109/NAECON.2000.894896.

Толюпа С.В., Дружинін В.А., Гордієвський О.Т. Розпізнавання групових об'єктів у багатопозиційних системах оперативного супроводження // Сучасний захист інформації. 2012. No 1. С. 66–70.

Обод І.І., Стрельницький О.О. Інформаційна безпека інформаційної мережі систем спостереження повітряного простору // Системи обробки інформації. 2015. № 9(134). С. 96–98.

V. Semenets et al. Quality Assessment of Measuring the Coordinates of Airborne Objects with a Secondary Surveillance Radar // Ageyev D., Radivilova T., Kryvinska N. (eds) Data-Centric Business and Applications. Lecture Notes on Data Engineering and Communications Technologies. 2021. Vol 69. Springer, Cham, pp. 105–125. doi: 10.1007/978-3-030-71892-3_5.

I. Ivashko, O. Krasnov and A. Yarovoy. Performance analysis of multisite radar systems // 2013 European Microwave Conference, 2013, pp. 1771–1774. doi: 10.23919/EuMC.2013.6687021.

Обод І.І., Стрельницький О.О. Захист інформації в мережі систем спостереження повітряного простору // Системи обробки інформації. 2016. № 2(139). С. 47–49.

J. Xu, X.-Z. Dai, X.-G. Xia, L.-B. Wang, J. Yu and Y.-N. Peng. Optimizations of Multisite Radar System with MIMO Radars for Target Detection // IEEE Transactions on Aerospace and Electronic Systems, vol. 47, no. 4, pp. 2329–2343, OCTOBER 2011. doi: 10.1109/TAES.2011.6034636.

I. Svyd, I. Obod, O. Maltsev, O. Vorgul, V. Chumak and B. Bakumenko. Estimation of the Spatial Coordinates of Air Objects in Synchronous Radar Networks for Airspace Observation // 2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T), 2021, pp. 425–428. doi: 10.1109/PICST54195.2021.9772227.

Обод И.И., Булай А.Н., Луценко Ю.А. Оценка точности определения местоположения воздушных объектов в синхронных информационных сетях радиолокации // Системи обробки інформації. 2006. № 9(58). С. 69–75.

Обод И.И., Булай А.Н., Луценко Ю.А. Оценка точности определения местоположения воздушных объектов в синхронных информационных сетях // Системи обробки інформації. 2006. № 9(58). С. 69–71.

H. You, X. Jianjuan, G. Xin. Radar Data Processing with Applications // Publishing House of Electronics Industry. 2016. doi: 10.1002/9781118956878.

Chen Su, Chuanyun Zou, Liangyu Jiao, Qianglin Zhang. A MIMO Radar Signal Processing Algorithm for Identifying Chipless RFID // Tags. Sensors (Basel). 2021 Dec 12;21(24):8314. doi: 10.3390/s21248314

Обод І.І., Стрельницький О.О., Андрусевич В.А. Методи підвищення якості інформаційного забезпечення системами спостереження повітряного простору // Системи обробки інформації. 2014. № 4(120). С. 53–55.

Обод І.І., Шевцова В.В. Порівняльний аналіз запитальних систем передачі інформації системи контролю повітряного простору // Зб. наук. пр. Харк. нац. ун-ту Повітряних Сил. 2013. № 1(34). С. 123–125.

І. Обод, І. Свид, О. Мальцев. Обробка даних радіолокаційних систем спостереження повітряного простору : навч. посібник. Харків : Друкарня Мадрид, 2021. 255 с.

J. Li, P. Stoica. MIMO Radar Signal Processing. Wiley-IEEE Press, 2008. 448 p.

S. M. Wu, G. A. Ybarra and W. E. Alexander. A complex optimal signal-processing algorithm for frequency-stepped CW data // IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, no. 6, pp. 754–757, June 1998. doi: 10.1109/82.686697.

Толюпа С.В., Дружинін В. А., Наконечний В.С., Цьопа Н.В., Батрак Є.О. Методи та алгоритми обробки радіолокаційної інформації у багатопозиційних системах зі змінною просторовою конфігурацією. К.: Логос, 2014, 230 с.

Обод И.И. Обнаружение воздушных целей системой вторичной радиолокации // Радіоелектронні і комп’ютерні системи. 2005. № 3. С.25–28.

G. Lee, S. Lee, K. Kim and N. Kwak. Probabilistic Track Initiation Algorithm Using Radar Velocity Information in Heavy Clutter Environments // 2018 15th European Radar Conference (EuRAD), 2018, pp. 277–280. doi: 10.23919/EuRAD.2018.8546666.

Conte, E., Daddio, E., Farina, A., and Longo, M. Multistatic radar detection – Synthesis and comparison of optimum and suboptimum receivers // IEE Proceedings F: Communications Radar and Signal Processing, vol. 130, no. 6, pp. 484–494, 1983.

I. Prokopenko, V. Vovk and K. Prokopenko. Fast resource management algorithm for multi-position radar systems // 2015 16th International Radar Symposium (IRS), 2015, pp. 1045–1051. doi: 10.1109/IRS.2015.7226339.

V. Andrusevich and I. Obod. Assessment of the Quality of Information Support by Air Radar Surveillance Systems // Advanced Information Systems, vol. 5, no. 2, pp. 78–82, 2021. doi: 10.20998/2522-9052.2021.2.10.

I. Prokopenko, V. Vovk, S. Stavitsky and V. Medvedev. Optimization of use of resource in multi-position radar systems // 2014 IEEE Microwaves, Radar and Remote Sensing Symposium (MRRS), 2014, pp. 92–97. doi: 10.1109/MRRS.2014.6956673.

I. Obod et al. Optimization of Data Processing Structure for Multi-Position Radar Surveillance Systems // 2021 IEEE 3rd Ukraine Conference on Electrical and Computer Engineering (UKRCON), 2021, pp. 133–137. doi: 10.1109/UKRCON53503.2021.9575286.

I. Svyd, I. Obod, O. Maltsev, O. Vorgul, I. Vorgul and I. Shevtsov. Method for Increasing the Interference Immunity of the Channel for Measuring of the Short-Range Navigation Radio System // 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, 2022, pp. 802–807. doi: 10.1109/TCSET55632.2022.9767069.

I. Shevtsov et al. A Method for Increasing the Capacity of Radio Systems of Short-Range Navigation // 2022 IEEE 2nd Ukrainian Microwave Week (UkrMW), Ukraine, 2022, pp. 629–633. doi: 10.1109/UkrMW58013.2022.10037138.

S. Starokozhev et al. Frequency Efficiency Evaluation of Query Airspace Surveillance Systems // 2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T), Kharkiv, Ukraine, 2021, pp. 501–505. doi: 10.1109/PICST54195.2021.9772190.

S. Starokozhev et al. Optimization of the Probability of Transmission of Flight Data in the Response Channel of Secondary Radar Systems // 2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T), Kharkiv, Ukraine, 2021, pp. 511–515. doi: 10.1109/PICST54195.2021.9772199.

V. Semenets et al. Method of increasing the relative throughput of requesting radar systems // Przegląd Elektrotechniczny, vol. 1, no. 11, 2022, pp. 99–103. doi: 10.15199/48.2022.11.17.

Published

2023-06-16

How to Cite

Svyd, I. (2023). Comparative analysis of the quality of detection of air objects by secondary radar systems. Radiotekhnika, 2(213), 78–87. https://doi.org/10.30837/rt.2023.2.213.09

Issue

Section

Articles