Deep learning-based models’ application to generating a cryptographic key from a face image

Authors

DOI:

https://doi.org/10.30837/rt.2023.2.213.03

Keywords:

deep learning models, machine learning, face recognition, cryptography, biometric authentication

Abstract

Generating cryptographic keys, such as passwords or pin codes, involves utilizing specialized algorithms that rely on complex mathematical transformations. These keys necessitate secure storage measures and complex distribution and processing mechanisms, which often incur substantial costs. However, an alternative approach emerges, proposing the generation of cryptographic keys based on the user's biometric data. Since one can generate keys "on the fly," there is no longer a requirement for key storage or distribution. These generated keys, derived from biometric information, can be effectively employed for biometric authentication, offering numerous advantages. Additionally, this alternative approach unlocks new possibilities for constructing information infrastructure. By utilizing biometric keys, the initiation of cryptographic algorithms like encryption and digital signatures becomes more streamlined and less burdensome in storing and processing procedures. This paper explores biometric key generation technologies, focusing on applying deep learning models. In particular, we employ convolutional neural networks to extract significant biometric features from human face images as the foundation for subsequent key generation processes. A comprehensive analysis involves extensive experimentation with various deep-learning models. We achieve remarkable results by optimizing the algorithm's parameters, with the False Reject Rate (FRR) and False Acceptance Rate (FAR) approximately equal and less than 10%. With code-based cryptographic extractors’ post-quantum level of security, we ensure the continued protection and integrity of sensitive information within the cryptographic framework.

References

S. Chakraborty and D. Das. An Overview of Face Liveness Detection // arXiv:1405.2227 [cs], May 2014, Accessed: Feb. 12, 2021. [Online]. Available: http://arxiv.org/abs/1405.2227

C. Rathgeb and A. Uhl. A survey on biometric cryptosystems and cancelable biometrics // EURASIP Journal on Information Security, vol. 2011, no. 1, p. 3, Sep. 2011, doi: 10.1186/1687-417X-2011-3.

U. Uludag, S. Pankanti, S. Prabhakar, and A. K. Jain. Biometric cryptosystems: issues and challenges // Proceedings of the IEEE, vol. 92, no. 6, pp. 948–960, Jun. 2004, doi: 10.1109/JPROC.2004.827372.

M. Lutsenko, A. Kuznetsov, A. Kiian, O. Smirnov, and T. Kuznetsova. Biometric Cryptosystems: Overview, State-of-the-Art and Perspective Directions // Advances in Information and Communication Technology and Systems, Cham, 2021, pp. 66–84. doi: 10.1007/978-3-030-58359-0_5.

Z. Jin, A. B. J. Teoh, B.-M. Goi, and Y.-H. Tay. Biometric cryptosystems: A new biometric key binding and its implementation for fingerprint minutiae-based representation // Pattern Recognition, vol. 56, pp. 50–62, Aug. 2016, doi: 10.1016/j.patcog.2016.02.024.

M. Lutsenko, A. Kuznetsov, Y. Gorbenko, I. Oleshko, Y. Pronchakov, and Y. Kotukh. Key Generation from Biometric Data of Iris // 2019 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo), Sep. 2019, pp. 1–6. doi: 10.1109/UkrMiCo47782.2019.9165457.

A. Kuznetsov, I. Oleshko, K. Chernov, M. Bagmut, and T. Smirnova. Biometric Authentication Using Convolutional Neural Networks // Advances in Information and Communication Technology and Systems, Cham, 2021, pp. 85–98. doi: 10.1007/978-3-030-58359-0_6.

A. Kuznetsov, A. Kiyan, A. Uvarova, R. Serhiienko, and V. Smirnov. New Code Based Fuzzy Extractor for Biometric Cryptography // 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S T), Oct. 2018, pp. 119–124. doi: 10.1109/INFOCOMMST.2018.8632040.

R. J. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding Theory // Deep Space Network Progress Report, vol. 44, pp. 114–116, Jan. 1978.

R. Overbeck and N. Sendrier. Code-based cryptography // Post-Quantum Cryptography. D. Bernstein, J. Buchmann and E. Dahmen, Eds. Berlin, Heidelberg: Springer, 2009, pp. 95–145. doi: 10.1007/978-3-540-88702-7_4.

W. Wang, J. Szefer, and R. Niederhagen. FPGA-Based Niederreiter Cryptosystem Using Binary Goppa Codes // Post-Quantum Cryptography, Cham, 2018, pp. 77–98. doi: 10.1007/978-3-319-79063-3_4.

M. Bardet, J. Chaulet, V. Dragoi, A. Otmani and J.-P. Tillich. Cryptanalysis of the McEliece Public Key Cryptosystem Based on Polar Codes // Post-Quantum Cryptography, Cham, 2016, pp. 118–143. doi: 10.1007/978-3-319-29360-8_9.

I. von Maurich, L. Heberle, and T. Güneysu. IND-CCA Secure Hybrid Encryption from QC-MDPC Niederreiter // Post-Quantum Cryptography, Cham, 2016, pp. 1–17. doi: 10.1007/978-3-319-29360-8_1.

D. Moody and R. Perlner. Vulnerabilities of ‘McEliece in the World of Escher // Post-Quantum Cryptography, Cham, 2016, pp. 104–117. doi: 10.1007/978-3-319-29360-8_8.

D. J. Bernstein, J. Buchmann, and E. Dahmen, Eds. Post-Quantum Cryptography. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. doi: 10.1007/978-3-540-88702-7.

T. Takagi, Ed., Post-Quantum Cryptography, vol. 9606. Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-29360-8.

V. M. Sidelnikov and S. O. Shestakov. On insecurity of cryptosystems based on generalized Reed-Solomon codes // Discrete Mathematics and Applications, vol. 2, no. 4, pp. 439–444, Jan. 1992, doi: 10.1515/dma.1992.2.4.439.

N. Sendrier. Niederreiter Encryption Scheme // Encyclopedia of Cryptography and Security, H. C. A. van Tilborg and S. Jajodia, Eds. Boston, MA: Springer US, 2011, pp. 842–843. doi: 10.1007/978-1-4419-5906-5_385.

R. Canto Torres and N. Sendrier. Analysis of Information Set Decoding for a Sub-linear Error Weight // Post-Quantum Cryptography, Cham, 2016, pp. 144–161. doi: 10.1007/978-3-319-29360-8_10.

Classic McEliece: Intro. https://classic.mceliece.org/index.html (accessed Feb. 12, 2021).

Classic McEliece: NIST submission. https://classic.mceliece.org/nist.html (accessed Feb. 12, 2021).

F. Schroff, D. Kalenichenko, and J. Philbin. FaceNet: A unified embedding for face recognition and clustering // 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2015, pp. 815–823. doi: 10.1109/CVPR.2015.7298682.

Machine Learning is Fun! Part 4: Modern Face Recognition with Deep Learning ; by Adam Geitgey ; Medium https://medium.com/@ageitgey/machine-learning-is-fun-part-4-modern-face-recognition-with-deep-learning-c3cffc121d78 (accessed Sep. 02, 2022).

Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. DeepFace: Closing the Gap to Human-Level Performance in Face Verification // 2014 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2014, pp. 1701–1708. doi: 10.1109/CVPR.2014.220.

G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller. Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments // presented at the Workshop on Faces in “Real-Life” Images: Detection, Alignment, and Recognition, Oct. 2008. Accessed: Sep. 02, 2022. [Online]. Available: https://hal.inria.fr/inria-00321923

Z. Liu, P. Luo, X. Wang, and X. Tang. Deep Learning Face Attributes in the Wild // arXiv, Sep. 24, 2015. doi: 10.48550/arXiv.1411.7766.

A. A. Taha and A. Hanbury. Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool // BMC Medical Imaging, vol. 1, no. 15, pp. 1–28, 2015, doi: 10.1186/s12880-015-0068-x.

D. Zakharov. Binary Encoder // Sep. 02, 2022. Accessed: Sep. 04, 2022. [Online]. Available: https://github.com/ZamDimon/Binary-Encoder

J. H. van Lint and G. van der Geer. Classical Goppa codes // Introduction to Coding Theory and Algebraic Geometry, J. H. van Lint and G. van der Geer, Eds. Basel: Birkhäuser, 1988, pp. 22–24. doi: 10.1007/978-3-0348-9286-5_5.

A. Kuznetsov, A. Kiian, V. Babenko, I. Perevozova, I. Chepurko, and O. Smirnov. New Approach to the Implementation of Post-Quantum Digital Signature Scheme // 2020 IEEE 11th International Conference on Dependable Systems, Services and Technologies (DESSERT), May 2020, pp. 166–171. doi: 10.1109/DESSERT50317.2020.9125053.

G. Hua. Facial Recognition Technologies // Encyclopedia of Big Data, L. A. Schintler and C. L. McNeely, Eds. Cham: Springer International Publishing, 2022, pp. 475–479. doi: 10.1007/978-3-319-32010-6_93.

C. Libby and J. Ehrenfeld. Facial Recognition Technology in 2021: Masks, Bias, and the Future of Healthcare // J Med Syst, vol. 45, no. 4, p. 39, Feb. 2021, doi: 10.1007/s10916-021-01723-w.

K. A. Gates. Our Biometric Future: Facial Recognition Technology and the Culture of Surveillance. NYU Press, 2011.

P. J. Grother, M. L. Ngan, and K. K. Hanaoka. Ongoing Face Recognition Vendor Test (FRVT. Part 2: Identification // NIST, Nov. 2018, Accessed: Aug. 26, 2022. [Online]. Available: https://www.nist.gov/publications/ongoing-face-recognition-vendor-test-frvt-part-2-identification.

Published

2023-06-16

How to Cite

Kuznetsov, A., & Zakharov, D. (2023). Deep learning-based models’ application to generating a cryptographic key from a face image. Radiotekhnika, 2(213), 31–40. https://doi.org/10.30837/rt.2023.2.213.03

Issue

Section

Articles