Distributed processing of radar information in airspace surveillance systems
DOI:
https://doi.org/10.30837/rt.2023.1.212.15Keywords:
radar system, airspace, surveillance system, radar information processing, distributed processing, evaluationAbstract
The work is dedicated to the analysis of the quality of combining assessments of the radar signals and airborne objects detections in the implementation of distributed processing of radar information of airspace surveillance systems. The main sources of radar information about the air situation in the airspace control system are primary surveillance radars, secondary radar systems and identification systems on the basis of "friend or foe". It should be noted that the analysis of the information security of single-position radars shows their vulnerability in a wide range of unintentional and intentional interference, as well as determining their location. This is due to the ease of detection of the emitting transmitter of the probing signal in single-position radars. It led to the main disadvantage of single-position radars – low noise immunity and low survivability. The transition to a network of radar systems can significantly reduce the impact of deliberately directed interference. It also allows the use of methods for distributed processing of radar information in airspace surveillance systems.
Analysis of the effectiveness of information support algorithms based on distributed processing of radar information of airspace surveillance systems, taking into account the final result, makes it possible to detect airborne objects using a packet of binary-quantized signals, taking into account two algorithms for combining detection results: channel accumulation and combining results; association of channel solutions and accumulation. It shows following: – the quality of consumer information support based on the proposed structure is much higher compared to the used radar information processing structure; the quality of information support for consumers has the best performance when using the signal processing method based on the accumulation of signals with the subsequent combination of detection results; the availability factor of the aircraft transponder significantly affects the quality of information support, already at P0<0.9 the use of integer logic for combining detection information is undesirable.
References
M. Skolnik. Improvements for air-surveillance radar // Proceedings of the 1999 IEEE Radar Conference. Radar into the Next Millennium (Cat. No.99CH36249), 1999, pp. 18 – 21. doi: 10.1109/NRC.1999.767195.
I. Svyd, I. Obod, O. Maltsev, V. Andrusevich, B. Bakumenko and O. Vorgul. Optimal Measurement of Signal Data Parameters of Requesting Radar Systems // 2021 IEEE 3rd Ukraine Conference on Electrical and Computer Engineering (UKRCON), 2021, pp. 138 – 141. doi: 10.1109/UKRCON53503.2021.9575235.
F. L. Neindre, G. Ferre, D. Dallet, F. Letellier and K. Pitois. A Successive Interference Cancellation-based Receiver for Secondary Surveillance Radar // IEEE Transactions on Aerospace and Electronic Systems, 2022, doi: 10.1109/TAES.2022.3193649.
I. Obod, I. Svyd, O. Maltsev and S. Starokozhev. The Effect of Masking Interference on the Quality of Request Signal Detection in Aircraft Responders of the Identification Friend or Foe Systems // 2020 IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T), 2020, pp. 721 – 726. doi: 10.1109/PICST51311.2020.9467955.
M. Barbary, A. S. Hafez and T. Crew. An Industrial Design and Implementation Approach of Secondary Surveillance Radar System // 2021 International Telecommunications Conference (ITC-Egypt), 2021, pp. 1 – 9. doi: 10.1109/ITC-Egypt52936.2021.9513961.
I. Svyd, I. Obod, O. Maltsev and A. Hlushchenko. Secondary Surveillance Radar Response Channel Information Security Improvement Method // 2020 IEEE 11th International Conference on Dependable Systems, Services and Technologies (DESSERT), 2020, pp. 341 – 345. doi: 10.1109/DESSERT50317.2020.9125018.
M. Leonardi and D.D. Fausto. Secondary Surveillance Radar Transponders classification by RF fingerprinting // 2018 19th International Radar Symposium (IRS), 2018, pp. 1 – 10. doi: 10.23919/IRS.2018.8448244.
Свид І. В. Обробка радіолокаційної інформації систем спостереження повітряного простору : монографія. Дніпро : ЛІРА ЛТД, 2022. 224 с.
Y. Jiang, Z. Yang, C. Bo, and D. Zhang. Continuous IFF response signal recognition technology based on capsule network // Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 2021, pp. 455 – 468. doi: 10.1007/978-3-030-90196-7_39.
I. Svyd, I. Obod and O. Maltsev. Interference Immunity Assessment Identification Friend or Foe Systems // Ageyev D., Radivilova T., Kryvinska N. (eds) Data-Centric Business and Applications. Lecture Notes on Data Engineering and Communications Technologies, vol 69. Springer, Cham, pp. 287 – 306, 2021. doi: 10.1007/978-3-030-71892-3_12.
T. M. Schuck, B. Shoemaker and J. Willey. Identification friend-or-foe (IFF) sensor uncertainties, ambiguities, deception and their application to the multi-source fusion process // Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093), 2000, pp. 85 – 94. doi: 10.1109/NAECON.2000.894896.
V. Semenets, I. Svyd, I. Obod, O. Maltsev and M. Tkach. Quality Assessment of Measuring the Coordinates of Airborne Objects with a Secondary Surveillance Radar // Ageyev D., Radivilova T., Kryvinska N. (eds) Data-Centric Business and Applications. Lecture Notes on Data Engineering and Communications Technologies, vol 69. Springer, Cham, pp. 105 – 125, 2021. doi: 10.1007/978-3-030-71892-3_5.
I. Ivashko, O. Krasnov and A. Yarovoy. Performance analysis of multisite radar systems // 2013 European Microwave Conference, 2013, pp. 1771-1774. doi: 10.23919/EuMC.2013.6687021.
Толюпа С.В., Дружинін В.А., Гордієвський О.Т. Розпізнавання групових об'єктів у багатопозиційних системах оперативного супроводження // Сучасний захист інформації. 2012. № 1. С. 66 – 70.
Обод І.І., Стрельницький О.О. Інформаційна безпека інформаційної мережі систем спостереження повітряного простору // Системи обробки інформації. 2015. № 9(134). С. 96 – 98.
Обод І.І., Стрельницький О.О. Захист інформації в мережі систем спостереження повітряного простору // Системи обробки інформації. 2016. № 2(139). С. 47 – 49.
J. Xu, X.-Z. Dai, X.-G. Xia, L.-B. Wang, J. Yu and Y.-N. Peng, Optimizations of Multisite Radar System with MIMO Radars for Target Detection // IEEE Transactions on Aerospace and Electronic Systems, vol. 47, no. 4, pp. 2329 – 2343, OCTOBER 2011. doi: 10.1109/TAES.2011.6034636.
Svyd I. Obod O. Maltsev O. Vorgul V. Chumak and B. Bakumenko. Estimation of the Spatial Coordinates of Air Objects in Synchronous Radar Networks for Airspace Observation // 2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T), 2021, pp. 425 – 428. doi: 10.1109/PICST54195.2021.9772227.
Обод И.И., Булай А.Н., Луценко Ю.А. Оценка точности определения местоположения воздушных объектов в синхронных информационных сетях радиолокации // Системи обробки інформації. 2006. № 9(58). С. 69 – 75.
Обод И.И., Булай А.Н., Луценко Ю.А. Оценка точности определения местоположения воздушных объектов в синхронных информационных сетях // Системи обробки інформації. 2006. № 9(58). С. 69 – 71.
H. You, X. Jianjuan, G. Xin. Radar Data Processing with Applications. Publishing House of Electronics Industry, 2016. doi: 10.1002/9781118956878.
Chen Su, Chuanyun Zou, Liangyu Jiao, Qianglin Zhang. A MIMO Radar Signal Processing Algorithm for Identifying Chipless RFID Tags. Sensors (Basel). 2021 Dec 12;21(24):8314. doi: 10.3390/s21248314
Обод І.І., Стрельницький О.О., Андрусевич В.А. Методи підвищення якості інформаційного забезпечення системами спостереження повітряного простору // Системи обробки інформації. 2014. № 4(120). С. 53 – 55.
Обод І.І., Шевцова В.В. Порівняльний аналіз запитальних систем передачі інформації системи контролю повітряного простору // Зб. наук. пр. Харк. нац. ун-ту Повітряних Сил. 2013. № 1(34). С. 123 – 125.
І. Обод, І. Свид, О. Мальцев. Обробка даних радіолокаційних систем спостереження повітряного простору : навч. посібник. Харків : Друкарня Мадрид, 2021. 255 с.
J. Li, P. Stoica. MIMO Radar Signal Processing. Wiley-IEEE Press, 2008. 448 p.
S. M. Wu, G. A. Ybarra and W. E. Alexander. A complex optimal signal-processing algorithm for frequency-stepped CW data // IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, no. 6, pp. 754 – 757, June 1998. doi: 10.1109/82.686697.
Толюпа С.В., Дружинін В. А., Наконечний В.С., Цьопа Н.В., Батрак Є.О. Методи та алгоритми обробки радіолокаційної інформації у багатопозиційних системах зі змінною просторовою конфігурацією. Київ : Логос, 2014. 230 с.
Обод И.И. Обнаружение воздушных целей системой вторичной радиолокации // Радіоелектронні і комп’ютерні системи. 2005. № 3. С.25 – 28.
G. Lee, S. Lee, K. Kim and N. Kwak. Probabilistic Track Initiation Algorithm Using Radar Velocity Information in Heavy Clutter Environments // 2018 15th European Radar Conference (EuRAD), 2018, pp. 277 – 280. doi: 10.23919/EuRAD.2018.8546666.
Conte E., Daddio E., Farina A., and Longo M. Multistatic radar detection – Synthesis and comparison of optimum and suboptimum receivers // IEE Proceedings F: Communications Radar and Signal Processing, vol. 130, no. 6, pp. 484 – 494, 1983.
I. Prokopenko, V. Vovk and K. Prokopenko. Fast resource management algorithm for multi-position radar systems // 2015 16th International Radar Symposium (IRS), 2015, pp. 1045 – 1051. doi: 10.1109/IRS.2015.7226339.
V. Andrusevich and I. Obod. Assessment of the Quality of Information Support by Air Radar Surveillance Systems // Advanced Information Systems, vol. 5, no. 2, pp. 78 – 82, 2021. doi: 10.20998/2522-9052.2021.2.10.
I. Prokopenko, V. Vovk, S. Stavitsky and V. Medvedev. Optimization of use of resource in multi-position radar systems // 2014 IEEE Microwaves, Radar and Remote Sensing Symposium (MRRS), 2014, pp. 92 – 97. doi: 10.1109/MRRS.2014.6956673.
I. Obod, I. Svyd, O. Vorgul, O. Maltsev, O. Datsenko and N. Boiko Optimization of Data Processing Structure for Multi-Position Radar Surveillance Systems // 2021 IEEE 3rd Ukraine Conference on Electrical and Computer Engineering (UKRCON), 2021, pp. 133 – 137. doi: 10.1109/UKRCON53503.2021.9575286.
I. Svyd, I. Obod, O. Maltsev, O. Vorgul, I. Vorgul and I. Shevtsov Method for Increasing the Interference Immunity of the Channel for Measuring of the Short-Range Navigation Radio System // 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, 2022, pp. 802 – 807. doi: 10.1109/TCSET55632.2022.9767069.
I. Shevtsov et al. A Method for Increasing the Capacity of Radio Systems of Short-Range Navigation // 2022 IEEE 2nd Ukrainian Microwave Week (UkrMW), Ukraine, 2022, pp. 629 – 633. doi: 10.1109/UkrMW58013. 2022.10037138.
S. Starokozhev, M. Tkach, A. Hlushchenko, O. Datsenko, M. Chernyshov and V. Chumak. Frequency Efficiency Evaluation of Query Airspace Surveillance Systems // 2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T), Kharkiv, Ukraine, 2021, pp. 501 – 505. doi: 10.1109/PICST 54195.2021.9772190.
S. Starokozhev, M. Tkach, A. Hlushchenko, O. Datsenko, M. Chernyshov and V. Chumak. Optimization of the Probability of Transmission of Flight Data in the Response Channel of Secondary Radar Systems // 2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T), Kharkiv, Ukraine, 2021, pp. 511 – 515. doi: 10.1109/PICST54195.2021.9772199.
V. Semenets et al. Method of increasing the relative throughput of requesting radar systems // Przegląd Elektrotechniczny, vol. 1, no. 11, 2022, pp. 99 – 103. doi: 10.15199/48.2022.11.17.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).