Study of parameters of the avalanche diode generator
DOI:
https://doi.org/10.30837/rt.2023.1.212.13Keywords:
avalanche-flying diode, experimental research, electromagnetic energy, transformation, mechanical energy, foil dielectricAbstract
The article is devoted to the development and analysis of an avalanche diode generator. The equivalent circuit of the generator is considered and its simplified analysis is carried out. Using the elements of graphic analysis, the conditions of stability of generator oscillations were obtained. The original design of the avalanche diode generator is proposed and considered. A feature of the generator design is the use of a combined oscillating system, which is a three-dimensional resonator in the form of a metal ring made of aluminum alloy placed on a double-sided foil dielectric. Thanks to the top cover made of the same foil dielectric, the oscillating system has a closed nature. The electromagnetic energy supply and output system is made using printed technologies based on a double-sided foil dielectric. The avalanche diode is located in the center of this structure and has a thermal connection with the external radiator. On the one hand, such a decision allowed us to increase significantly the Q-factor of the oscillating system compared to the oscillating system made by the printed method and, at the same time, gave an opportunity to combine the developed auto-generator with other elements of the waveguide path made in the printed version. The developed generator has the possibility of both mechanical, by changing the volume of the resonator with the help of special backlash-free elements, and electronic adjustment, by changing the supply current. The article contains the results of experimental studies of the proposed design of the auto-generator, in particular the dependence of the output power on the frequency of oscillations and on the supply current, as well as the Q factor on the supply current. The research results indicate a fairly high Q-factor of such an oscillating system and, as a result, increased stability of oscillations. In addition, this design to a certain extent improves the overall manufacturability of the design and its material capacity in comparison with the waveguide version.
References
T. Misawa. Multiple uniform lagger approximationin analysis of negativ resistance in p-n junction in breakdown // IEEE Tran. ElectronDevices vol. ED-14 1967. Рp.795 – 808.
Сили И.И., Черенков А.Д. Параметри и стабильность частоти диодного генератрора с резонатором проходного типа // Енергосбережение Енергетика Енерграудит. 2015. №9. С. 53 – 59.
Сили И. И. Теоретический анализ процесса взаимодействия радиоимпульсов с колорадскими жуками в растительной среде картофеля // Технологический аудит и резервы производства. Харків, 2015. №4. С. 55 – 59.
Карушкин Н. Ф. Синхронизация генераторов на ЛПД импульсного и непрерывного действия в мм-диапазоне длин волн. Ч. 1. Конструкции генераторов и обобщенная модель их синхронизации внешним сигналом // Технология и конструирование в электронной аппаратуре. 2021 № 1–2 С. 10 – 20. http://dx.doi.org/10.15222/TKEA2021.1-2.10
Edgar Martinez: Next Generation of Terahertz Sources and Detectors. (PDF), S.4, abgerufen am 5. September 2021 (Vortragsfolie).
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).