Current state and development trends of class E oscillators: an overview
DOI:
https://doi.org/10.30837/rt.2023.1.212.12Keywords:
generators of class E, circuits of oscillators, feedback links, classification of generators of the class E familyAbstract
An analysis of the current state of power generators of the class E family was carried out. They include classes: inverse E (E-1), with an injection of harmonics – class EM, hybrid classes E/Fn and EFn, including those built based on an active distributed transformer scheme. New developments of such oscillators over the past five years are considered. Significant progress has been made in the development of new feedback schemes. The study of oscillator schemes with power summation and the use of synchronized oscillators is considered. In connection with the appearance of new active devices, circuits using additional active elements – drivers of powerful transistors and the use of two-stroke circuits for the construction of a class E oscillator key are spreading. The proposed classification of oscillators is based on the principle of building an output circuit and a feedback circuit, the morphological table of types is constructed class E oscillators. The principles of operation and characteristics of some new schemes of class E oscillators and their parameters are considered. The trends in the development of class E generators are determined, the main of which is the design of generators for operation in radio engineering systems and matching their parameters with the needs of such systems, as well as in systems of power (industrial) electronics, wireless energy transmission, biomedical and information systems. This is done in accordance with the trend of increasing the oscillator signal parameters while maintaining high efficiency. The variety of power levels, frequencies, and type of performance of class E oscillators is preserved and expanded, in the form of integrated circuits, which allows increasing the parameters of transmitters, sensors, and systems of compatible energy and information transmission.
References
Крижановський В.Г., Макаров Д. Г., Чернов Д. В., Крижановський В. В. Автогенератори класу Е ; за ред. В. Г. Крижановського / ДонНУ ім. Василя Стуса. Вінниця : Нілан-ЛТД, 2017. 220 с.
Grebennikov A., Franco M. J. (2021) Switchmode RF and Microwave Power Amplifiers Third edition. Academic Press. 819 p.
Kazimierczuk M. (2014). RF Power Amplifiers. Second edition. Wiley. 687 p.
Ebert J., & Kazimierczuk M. Class E high-efficiency tuned power oscillator // IEEE Journal of Solid-State Circuits. 16(2). Р. 62 – 66. https://doi.org/10.1109/jssc.1981.1051542
Seidel A., Wagner J., and Ellinger F. (2022). Polar Transmitter with Pseudo-Differential Inverse Class-E Output Stage in 22 nm FD-SOI // 14th German Microwave Conference (GeMiC). 01 – 04.
Крыжановский В.Г., Прилипская А.С. О классификации транзисторных усилителей мощности // Прикладная радиоэлектроника. 2010. Т. 9(4). С. 554 – 561.
Makarov D.G., Kryzhanovskyi V.V., Chernov D.V. (2016) Class E oscillator with electrically elongated feedback network // 2016 Intern. Conf. Radio Electronics & Info Communications (UkrMiCo). Р.1 – 3. doi: 10.1109/UkrMiCo.2016.7739617.
Крыжановский В.Г. Автогенератор класса Е с расширенной полосой перестройки // Радиотехника. 2013. Вып. 175. С. 184 – 188.
Kurumizawa T. & Koizumi H. (2021) Voltage-Source Parallel Resonant Class E Oscillator // IEEE International Symposium on Circuits and Systems (ISCAS). 1 – 5. doi: 10.1109/ISCAS51556.2021.9401750.
Yamashita Y. & Wada K. (2017) Wireless power transmitter using parallel-tuned class-E power oscillator // International Symposium on Electronics and Smart Devices (ISESD). 287 – 290. doi: 10.1109/ISESD.2017.8253350.
Matsuhashi S., et al., (2020) Load-Independent Self-Tuned Parallel Resonant Power Oscillator // 2020 IEEE Energy Conversion Congress and Exposition (ECCE). 1571 – 1576. doi: 10.1109/ECCE44975.2020.9236069.
Крыжановский В.Г., Охрименко Ю.Г., Чернов Д.В. Анализ области устойчивой работы кольцевого автогенератора класса Е // Радиотехника. 2013. Вып. 175. С.189 – 194
Ahmadi M. M. & Pezeshkpour S. (2020). A Self-Starting Class-E Power Oscillator with an Inverting Gate Driver // IEEE Transactions on Industrial Electronics. 67(10). 8344 – 8354. https://doi.org/10.1109/tie.2019.2949533
Laskovski A. N. & Yuce M. (2010). Class-E oscillators as wireless power transmitters for biomedical implants. In E. Cianca (Ed.) // 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies 2010. Pp. 1 – 5. IEEE, Institute of Electrical and Electronics Engineers. DOI: 10.1109/ ISABEL. 2010.
Inaba T. & Koizumi H. (2018). Class E/F3 Tuned Power Oscillator // IEEE Transactions on Power Electronics. 33(2). 1420–1427. https://doi.org/10.1109/tpel.2017.2686900
Krizhanovski V.G., Chernov D.V., Grebennikov Andrei. (2018) Low-Voltage Class E/F3 High Frequency Oscillator // 14th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering, Lviv-Slavske, Ukraine. 607 – 611. doi: 10.1109/TCSET.2018.8336275
Ahmadi M. M., & Salehi-Sirzar M. (2019). A Self-Tuned Class-E Power Oscillator // IEEE Transactions on Power Electronics. 34(5). 4434 – 4449. https://doi.org/10.1109/tpel.2018.2859387
Cantu H. I., Mury T., Fusco V.F. (2007) Inverse Class E amplifier and oscillator phase noise characteristics. European Microwave Conf., 9-12 Oct. 2007: proc. Munich, Germany. 740 – 742.
Komiyama Y., Matsuhashi S., Zhu W., Nguyen K., Uematsu T., Ito Y., Mishima T., & Sekiya H. (2022). Wireless power transfer system with load-independent inverse class-E oscillator // Nonlinear Theory and Its Applications, IEICE, 13(2). 465 – 470. https://doi.org/10.1587/nolta.13.465
Krizhanovski V., Kryzhanovskyi V., Grebennikov A., (2020) Class E oscillator with two switchable frequencies // IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET – 2020), IEEE. doi: 10.1109/TCSET49122.2020.235576
Miyahara R., Wei X., Nagashima T., Kousaka T. & Sekiya H. (2012). Design of Class-EM Oscillator with Second Harmonic Injection // IEEE Transactions on Circuits and Systems I: Regular Papers. 59(10). 2456 – 2467. https://doi.org/10.1109/tcsi.2012.2188936
Madureira H., Deltimple N., Kerhervé E., Haddad S. (2013) Design of a class EF2 power oscillator for RF communication application // IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS). 763 – 766.
Barzgari M., Ghafari A., Nikpaik A. & Medi A. (2021). Even-Harmonic Class-E CMOS Oscillator // IEEE Journal of Solid-State Circuits. 1594 – 1609. https:// doi.org/10.1109/jssc.2021.3124971
Apperley T., Nielsen J. & Okoniewski M. (2020). A Class E/Fodd Power Oscillator Incorporating a Distributed Active Transformer // IEEE Transactions on Microwave Theory and Techniques. 68(6). P. 2409 – 2418. https://doi.org/10.1109/tmtt.2020.2977898
Yabe Y., Tanaka H.-A., Sekiya H., Nakagawa M., Mori F., Utsunomiya K., & Keida A. (2020). Locking Range Maximization in Injection-Locked Class-E Oscillator – A Case Study for Optimizing Synchronizability // IEEE Transactions on Circuits and Systems I: Regular Papers. 67(5). 1762 – 1774. https://doi.org/10.1109/tcsi.2019.2960847
Ardila V., Ramirez F. & Suarez A. (2021). Nonlinear Analysis of a High-Power Oscillator Inductively Coupled to an External Resonator // IEEE Microwave and Wireless Components Letters. 31(6). P. 737 – 740. https://doi.org/10.1109/lmwc.2021.3064246
Kryzhanovskyi V., Chernov D., Makarov D. & Krizhanovski V. (2022). A Simple Method to Increase the Stability of a Class E Power Oscillator // 2022 IEEE 16th Int. Conf. on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). pp. 785 – 788. doi: 10.1109/TCSET55632.2022.9766864.
Krizhanovski V., Makarov D., Kryzhanovskyi V. & Grebennikov, A. (2021) Mutual synchronization of class E oscillators // IEEE 5th Int. Conf. on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo) 254 – 257. doi: 10.1109/UkrMiCo52950.2021.9716687.
Rezk T. M., Fahmy G. A., Ibrahim S. A. & Ragai H. F. A 433 MHz e-GaN HEMT based Power Oscillator for Far Field Wireless Power Transfer // 2020 8th International Japan-Africa Conference on Electronics, Communications, and Computations (JAC-ECC). 2020. 80 – 83. doi: 10.1109/JAC-ECC51597.2020.9355883.
Rezk T. M., Fahmy G. A., Ibrahim S. A. & Ragai H. F. (2021). Design of a differential power oscillator for 433 MHz WPT using e-GaN HEMTs // Ain Shams Engineering Journal. https://doi.org/10.1016/j.asej.2021.09.008
Saheb Z. & El-Masry E. (2019). An energy-efficient and ultra-low-voltage power oscillator in CMOS 65 nm // Analog Integrated Circuits and Signal Processing. doi:10.1007/s10470-019-01431-z
Makhoul R., Zhuang J., Maynard X., Perichon P., Frey D., Jeannin, P.-O. & Lembeye, Y. (2019). A Very High Frequency Self-Oscillating Inverter Based on a Novel Free-Running Oscillator // IEEE Transactions on Power Electronics. 34(9). 8289 – 8292. https://doi.org/10.1109/tpel.2019.2904886
Jarndal A. & Petrovic T. (2018) GaN-Based Oscillators for Wireless Power Transfer Applications // 2018 International Conference on Advanced Computation and Telecommunication (ICACAT). 1-5. doi: 10.1109/ICACAT.2018.8933533
Jong-Ryul Yang, (2018) A Class E Power Oscillator for 6.78-MHz Wireless Power Transfer System // Electr Eng Technol. 13(1): 220 – 225.
Phaebua K., Lertwiriyaprapa T., Boonpoonga A., Rattanarungngam D. & Torrungrueng, D. (2022) An Experimental Study of Effect of Dielectric Materials on Wireless Power Transmission at 6.78 MHz // 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). 1–4. doi: 10.1109/ECTI-CON54298.2022.9795554
Ahmadi, M. M., Pezeshkpour, S., & Kabirkhoo, Z. (2021). A High-Efficiency ASK-Modulated Class-E Power and Data Transmitter for Medical Implants // IEEE Transactions on Power Electronics, 1. https://doi.org/10.1109/tpel.2021.3092829
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).