Current state and development trends of class E oscillators: an overview




generators of class E, circuits of oscillators, feedback links, classification of generators of the class E family


An analysis of the current state of power generators of the class E family was carried out. They include classes: inverse E (E-1), with an injection of harmonics – class EM, hybrid classes E/Fn and EFn, including those built based on an active distributed transformer scheme. New developments of such oscillators over the past five years are considered. Significant progress has been made in the development of new feedback schemes. The study of oscillator schemes with power summation and the use of synchronized oscillators is considered. In connection with the appearance of new active devices, circuits using additional active elements – drivers of powerful transistors and the use of two-stroke circuits for the construction of a class E oscillator key are spreading. The proposed classification of oscillators is based on the principle of building an output circuit and a feedback circuit, the morphological table of types is constructed class E oscillators. The principles of operation and characteristics of some new schemes of class E oscillators and their parameters are considered. The trends in the development of class E generators are determined, the main of which is the design of generators for operation in radio engineering systems and matching their parameters with the needs of such systems, as well as in systems of power (industrial) electronics, wireless energy transmission, biomedical and information systems. This is done in accordance with the trend of increasing the oscillator signal parameters while maintaining high efficiency. The variety of power levels, frequencies, and type of performance of class E oscillators is preserved and expanded, in the form of integrated circuits, which allows increasing the parameters of transmitters, sensors, and systems of compatible energy and information transmission.


Крижановський В.Г., Макаров Д. Г., Чернов Д. В., Крижановський В. В. Автогенератори класу Е ; за ред. В. Г. Крижановського / ДонНУ ім. Василя Стуса. Вінниця : Нілан-ЛТД, 2017. 220 с.

Grebennikov A., Franco M. J. (2021) Switchmode RF and Microwave Power Amplifiers Third edition. Academic Press. 819 p.

Kazimierczuk M. (2014). RF Power Amplifiers. Second edition. Wiley. 687 p.

Ebert J., & Kazimierczuk M. Class E high-efficiency tuned power oscillator // IEEE Journal of Solid-State Circuits. 16(2). Р. 62 – 66.

Seidel A., Wagner J., and Ellinger F. (2022). Polar Transmitter with Pseudo-Differential Inverse Class-E Output Stage in 22 nm FD-SOI // 14th German Microwave Conference (GeMiC). 01 – 04.

Крыжановский В.Г., Прилипская А.С. О классификации транзисторных усилителей мощности // Прикладная радиоэлектроника. 2010. Т. 9(4). С. 554 – 561.

Makarov D.G., Kryzhanovskyi V.V., Chernov D.V. (2016) Class E oscillator with electrically elongated feedback network // 2016 Intern. Conf. Radio Electronics & Info Communications (UkrMiCo). Р.1 – 3. doi: 10.1109/UkrMiCo.2016.7739617.

Крыжановский В.Г. Автогенератор класса Е с расширенной полосой перестройки // Радиотехника. 2013. Вып. 175. С. 184 – 188.

Kurumizawa T. & Koizumi H. (2021) Voltage-Source Parallel Resonant Class E Oscillator // IEEE International Symposium on Circuits and Systems (ISCAS). 1 – 5. doi: 10.1109/ISCAS51556.2021.9401750.

Yamashita Y. & Wada K. (2017) Wireless power transmitter using parallel-tuned class-E power oscillator // International Symposium on Electronics and Smart Devices (ISESD). 287 – 290. doi: 10.1109/ISESD.2017.8253350.

Matsuhashi S., et al., (2020) Load-Independent Self-Tuned Parallel Resonant Power Oscillator // 2020 IEEE Energy Conversion Congress and Exposition (ECCE). 1571 – 1576. doi: 10.1109/ECCE44975.2020.9236069.

Крыжановский В.Г., Охрименко Ю.Г., Чернов Д.В. Анализ области устойчивой работы кольцевого автогенератора класса Е // Радиотехника. 2013. Вып. 175. С.189 – 194

Ahmadi M. M. & Pezeshkpour S. (2020). A Self-Starting Class-E Power Oscillator with an Inverting Gate Driver // IEEE Transactions on Industrial Electronics. 67(10). 8344 – 8354.

Laskovski A. N. & Yuce M. (2010). Class-E oscillators as wireless power transmitters for biomedical implants. In E. Cianca (Ed.) // 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies 2010. Pp. 1 – 5. IEEE, Institute of Electrical and Electronics Engineers. DOI: 10.1109/ ISABEL. 2010.

Inaba T. & Koizumi H. (2018). Class E/F3 Tuned Power Oscillator // IEEE Transactions on Power Electronics. 33(2). 1420–1427.

Krizhanovski V.G., Chernov D.V., Grebennikov Andrei. (2018) Low-Voltage Class E/F3 High Frequency Oscillator // 14th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering, Lviv-Slavske, Ukraine. 607 – 611. doi: 10.1109/TCSET.2018.8336275

Ahmadi M. M., & Salehi-Sirzar M. (2019). A Self-Tuned Class-E Power Oscillator // IEEE Transactions on Power Electronics. 34(5). 4434 – 4449.

Cantu H. I., Mury T., Fusco V.F. (2007) Inverse Class E amplifier and oscillator phase noise characteristics. European Microwave Conf., 9-12 Oct. 2007: proc. Munich, Germany. 740 – 742.

Komiyama Y., Matsuhashi S., Zhu W., Nguyen K., Uematsu T., Ito Y., Mishima T., & Sekiya H. (2022). Wireless power transfer system with load-independent inverse class-E oscillator // Nonlinear Theory and Its Applications, IEICE, 13(2). 465 – 470.

Krizhanovski V., Kryzhanovskyi V., Grebennikov A., (2020) Class E oscillator with two switchable frequencies // IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET – 2020), IEEE. doi: 10.1109/TCSET49122.2020.235576

Miyahara R., Wei X., Nagashima T., Kousaka T. & Sekiya H. (2012). Design of Class-EM Oscillator with Second Harmonic Injection // IEEE Transactions on Circuits and Systems I: Regular Papers. 59(10). 2456 – 2467.

Madureira H., Deltimple N., Kerhervé E., Haddad S. (2013) Design of a class EF2 power oscillator for RF communication application // IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS). 763 – 766.

Barzgari M., Ghafari A., Nikpaik A. & Medi A. (2021). Even-Harmonic Class-E CMOS Oscillator // IEEE Journal of Solid-State Circuits. 1594 – 1609. https://

Apperley T., Nielsen J. & Okoniewski M. (2020). A Class E/Fodd Power Oscillator Incorporating a Distributed Active Transformer // IEEE Transactions on Microwave Theory and Techniques. 68(6). P. 2409 – 2418.

Yabe Y., Tanaka H.-A., Sekiya H., Nakagawa M., Mori F., Utsunomiya K., & Keida A. (2020). Locking Range Maximization in Injection-Locked Class-E Oscillator – A Case Study for Optimizing Synchronizability // IEEE Transactions on Circuits and Systems I: Regular Papers. 67(5). 1762 – 1774.

Ardila V., Ramirez F. & Suarez A. (2021). Nonlinear Analysis of a High-Power Oscillator Inductively Coupled to an External Resonator // IEEE Microwave and Wireless Components Letters. 31(6). P. 737 – 740.

Kryzhanovskyi V., Chernov D., Makarov D. & Krizhanovski V. (2022). A Simple Method to Increase the Stability of a Class E Power Oscillator // 2022 IEEE 16th Int. Conf. on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). pp. 785 – 788. doi: 10.1109/TCSET55632.2022.9766864.

Krizhanovski V., Makarov D., Kryzhanovskyi V. & Grebennikov, A. (2021) Mutual synchronization of class E oscillators // IEEE 5th Int. Conf. on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo) 254 – 257. doi: 10.1109/UkrMiCo52950.2021.9716687.

Rezk T. M., Fahmy G. A., Ibrahim S. A. & Ragai H. F. A 433 MHz e-GaN HEMT based Power Oscillator for Far Field Wireless Power Transfer // 2020 8th International Japan-Africa Conference on Electronics, Communications, and Computations (JAC-ECC). 2020. 80 – 83. doi: 10.1109/JAC-ECC51597.2020.9355883.

Rezk T. M., Fahmy G. A., Ibrahim S. A. & Ragai H. F. (2021). Design of a differential power oscillator for 433 MHz WPT using e-GaN HEMTs // Ain Shams Engineering Journal.

Saheb Z. & El-Masry E. (2019). An energy-efficient and ultra-low-voltage power oscillator in CMOS 65 nm // Analog Integrated Circuits and Signal Processing. doi:10.1007/s10470-019-01431-z

Makhoul R., Zhuang J., Maynard X., Perichon P., Frey D., Jeannin, P.-O. & Lembeye, Y. (2019). A Very High Frequency Self-Oscillating Inverter Based on a Novel Free-Running Oscillator // IEEE Transactions on Power Electronics. 34(9). 8289 – 8292.

Jarndal A. & Petrovic T. (2018) GaN-Based Oscillators for Wireless Power Transfer Applications // 2018 International Conference on Advanced Computation and Telecommunication (ICACAT). 1-5. doi: 10.1109/ICACAT.2018.8933533

Jong-Ryul Yang, (2018) A Class E Power Oscillator for 6.78-MHz Wireless Power Transfer System // Electr Eng Technol. 13(1): 220 – 225.

Phaebua K., Lertwiriyaprapa T., Boonpoonga A., Rattanarungngam D. & Torrungrueng, D. (2022) An Experimental Study of Effect of Dielectric Materials on Wireless Power Transmission at 6.78 MHz // 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). 1–4. doi: 10.1109/ECTI-CON54298.2022.9795554

Ahmadi, M. M., Pezeshkpour, S., & Kabirkhoo, Z. (2021). A High-Efficiency ASK-Modulated Class-E Power and Data Transmitter for Medical Implants // IEEE Transactions on Power Electronics, 1.



How to Cite

Krizhanovski, V. (2023). Current state and development trends of class E oscillators: an overview. Radiotekhnika, 1(212), 134–140.