Experimental studies of a lidar emitter built according to the oscillator-amplifier scheme
DOI:
https://doi.org/10.30837/rt.2023.1.212.11Keywords:
lidar, oscillator, amplifier, flashlamp, resonator, pumpAbstract
The results of experimental studies of the energy characteristics of the leader transmitter built according to the lamp-pumped organic-dye oscillator-amplifier scheme are presented. When constructing the lidar emitter according to the oscillator-amplifier scheme under conditions of constant pump density, the problem arises of choosing the ratio between the length of the active element of the generator and the length of the active medium of the traveling wave amplifier, which ensures the maximum efficiency of the entire emitter. The main objective of the work was experimental verification of the results of theoretical studies in order to determine the factors influencing the choice of the ratio of the lengths of the active elements of the generator and amplifier based on the organic dye rhodamine 6G with lamp pumping with their limited total length.
The results of the experiments confirm the theoretical conclusions that there are optimal ratios of the lengths of the generator and amplifier, at which the radiation energy is maximum. The limiting length of the amplifier and the energy of the emitter, built according to the scheme, the oscillator-amplifier are limited due to an increase in the intensity of the radiation that is amplified along the active element, as well as an increase in the intensity of the amplified noise.
References
Борейшо А. С., Ким А. А., Коняев М. А., Лугиня В. С., Морозов А. В., Орлов А. Е. Современные лидарные средства дистанционного зондирования атмосферы // Фотоника. 2019. Т. 13, № 7. С. 748 – 757.
X. Chu and G. Papen. Resonance fluorescence lidar for measurements of the middle and upper atmosphere // Laser Remote Sensing, T. Fujii, and T. Fukuchi, Eds., pp. 179 – 432, CRC Press (2005).
Mikhalev A.V., Tashchilin M.A. and Sakerin S.M. Effect of Atmospheric Aerosol on Ground-Based Airglow Observations // Atmospheric and Oceanic Optics. 2019. V.32. No.04. pp.410 – 415.
J. Wu, W. Feng, X. Xue, D. R. Marsh, J. M. C. Plane, X. Dou. The 27 Day Solar Rotational Cycle Response in the Mesospheric Metal Layers at Low Latitudes, Geophysical Research Letters, 10.1029/2019GL083888, 46, 13, (7199 – 7206), (2019).
Lidar observations of thermospheric Na layers up to 170 km with a descending tidal phase at Lijiang (26.7 N, 100.0 E), China / Q. Gao, X. Chu, X. Xue, X. Dou, T. Chen, J. Chen // Journal of Geophysical Research: Space Physics, 2015. Pp. 9213 – 9220.
Kylee Branning, Mark Conde, Miguel Larsen, Riley Troyer, Resolving Vertical Variations of Horizontal Neutral Winds in Earth's High Latitude Space-Atmosphere Interaction Region (SAIR) // Journal of Geophysical Research: Space Physics, 10.1029/2021JA029805, 127, 5, (2022)
Sharon L. Vadas, Erich Becker, Numerical Modeling of the Excitation, Propagation, and Dissipation of Primary and Secondary Gravity Waves during Wintertime at McMurdo Station in the Antarctic // Journal of Geophysical Research: Atmospheres, 10.1029/2017JD027974, 123, 17, (9326 – 9369), (2018).
Зарудный А.А., Плетенев В.Г., Верхоробин А.Л. Лазер повышенной спектральной яркости для исследования атмосферы // Радиотехника. 1998. Вып.102. С.170 – 175.
Шидловский В. Р., Шраменко М.В., Якубович С.Д. Перестраиваемый низкокогерентный источник света высокой спектральной яркости // Квантовая электроника. 2021. Т. 51:4. С. 287 – 292.
Зарудный А.А., Цопа А.И. Энергетические характеристики передатчика лидара, построенного по схеме генератор-усилитель // Радиотехника. 2018. Вып.192. С.56 – 60.
Петров В.В., Петров В. А., Купцов Г.В., Лаптев А.В., Кирпичников А. В., Пестряков Е.В. Моделирование процесса лазерного усиления с учётом зависимости теплофизических и лазерных характеристик среды от распределения температуры в активном элементе Yb:YAG // Квантовая электроника, 2020. Т. 50:4. С. 315 – 320.
Allain J.Y. High energy pulsed dye lasers for atmosferic sounding // Appl. Optics. 1989. V.18, №3. P.287 – 289.
Tunable dye laser amplifier chain for laser isotope separation / I. S. Grigoriev [et al.] // Quantum Electronics. 2004. Vol. 34, N.5. P. 447 – 450.
Vasnev N.A., Trigub M.V. and Evtushenko G.S. Features of Operation of a Brightness Amplifier on Copper Bromide Vapors in the Bistatic Scheme of a Laser Monitor // Atmospheric and Oceanic Optics. 2019. V. 32. No.04. Р.483 – 489.
Звелто О. Принципы лазеров ; пер. под науч. ред. Т. А. Шмаонова. 4-е изд. СПб. : Лань, 2008. 720c.
Басецкий В.А., Зарудный А.А. Модель генерационных характеристик излучателя резонансного лидара // Радиотехника. 2010. Вып 160. С.124 – 129.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).