Influence of ferrimagnetic resonance on conversion of electromagnetic energy by a system consisting of two cylinders into a mechanical one
DOI:
https://doi.org/10.30837/rt.2023.1.212.09Keywords:
cylinder system, ferrimagnetic resonance, electromagnetic energy, conversion, mechanical energyAbstract
This work presents the analysis of the integral equation of macroscopic electrodynamics, the solution of the problem of diffraction of a plane polarized electromagnetic wave on a system consisting of two ferrite cylinders of radii corresponding to spatial resonance (R ≤ 0.1∙ λo, λо is the wavelength in free space ). The electromagnetic fields inside the first (second) cylinder are presented as the sum of the fields of the solitary first (second) cylinder, a plane-parallel wave falls on it and is scattered by the second (first) solitary cylinder. The expressions for the fields satisfy Maxwell's equations, boundary conditions for two cylinders, and integral equations. The influence of the distance between the centers of the cylinders on the strength of the electromagnetic field in the middle of the ferrite cylinders has been studied. It has been established that in a system consisting of two cylinders, a group resonance arises due to their mutual arrangement in space. The transformation of microwave energy on a system consisting of two ferrite cylinders depending on the value of their resonant radii at ferrimagnetic resonance has been studied. An inhomogeneous electromagnetic wave created by propagating in free space with a power flux density of 622 kW/m2 and a length of 3.2 cm reflected from a metal screen acts on a system of ferrite cylinders, the total length of which is 1.28 m, and the resonant radius is 3.863 mm with a force equal to 4 N. The results of studying the phenomenon of diffraction on a system consisting of two ferrite cylinders show that the total force with which the inhomogeneity of a standing electromagnetic wave acts on two cylinders is 2.8 times greater than the force acting on a solitary cylinder.
References
Пондеромоторное действие электромагнитного поля (теория и приложения) / Р. А. Валитов, Н. А. Хижняк, В. С. Жилков, [и др.] ; под ред. Р. А. Валитова. Москва : Сов. радио, 1975. 232 с.
Мартыненко Л. Г. Влияние ферримагнитного резонанса на преобразование электромагнитной энергии в механическую / Л. Г. Мартыненко, Г. Л. Комарова, В. В. Маличенко // Известия вузов, радиоэлектроника. 2016. Т. 59. №. 10. С. 30 – 36. DOI: 10.3103/S0735272716100046.
Комарова Г. Л. Влияние ферримагнитного резонанса на преобразование энергии электромагнитной волны ЖИГ – резонатором в механическую энергию // Радиотехника. 2021. Вып. 207. С. 149 – 158.
Measurement of Impulsive Thrust from a Closed Radio-Frequency Cavity in Vacuum / H. White, P March, J. Lawrence et al. // Journal of propulsion and power. Vol. 33, No. 4. July–August 2017. P. 830 – 841. DOI: 10.2514/1.В36120.
Мартыненко Л. Г. Влияние ферримагнитного резонанса на преобразование энергии электромагнитной стоячей волны в механическую энергию / Л. Г. Мартыненко, Г. Л. Комарова // Известия вузов, радиоэлектроника. 2020. Т. 63. №. 5. С 290 – 298. DOI: 10.3103/S0735272720050039
Мартиненко Л. Г. Спосіб перетворення електромагнітної енергії в механічну / Л.Г. Мартиненко, Г.Л. Комарова, В.В. Маличенко. Патент на винахід України. № 117748. Бюл. № 18 від 25.09.2018.
Макеева Г. С. Электродинамический анализ постоянных распространения электромагнитных волн в 3D-решотках магнитных нанопроволок в условиях магнитного резонанса в микроволновом диапазоне / Г. С. Макеева, О. А. Голованов // Радиотехника и электроника. 2016. Т. 61. №. 1. С. 3 – 11. DOI : 10.7868/S0033849415110145
Kozar A. I. Resonant degenerate crvstal made of spheres located magnetodielectric medium // International Journal of Electromagnetics and Applications. 2013. Vol. 3, No. 2. Рp. 15 – 19. DOI: 10.5923/j.idea.20130302.02.
Kозар А.И. Резонансные метакристаллы из малых магнитодиэлектрических сфер : монография. Харьков : ХНУРЭ, 2014. 352 с.
Хижняк Н. А. Интегральные уравнения макроскопичной электродинамики. Киев : Наук. думка. 1986, 280 с.
Хижняк Н. А. Функция Грина уравнений Максвелла для неоднородных сред // Журнал технической физики. 1958. Т. 28. Вып. 7. С. 1592 – 1609.
Никольский В.В. Теория электромагнитного поля. Москва : Высш. шк., 1961. 371 с.
Микроволновые ферриты. https://www.domen.ru/mikrovolnovye-ferrity 07.01.2018. Дата доступу: 13.02.20.
Гуревич А.Г. Ферриты на сверхвысоких частотах. Москва : Физматгиз, 1960.
.Стреттон Дж. А. Теория электромагнетизма. Москва : Гостехиздат, 1948. 539 с.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).