Wireless power transmission technologies

Authors

DOI:

https://doi.org/10.30837/rt.2022.4.211.09

Keywords:

wireless power transfer, energy transmission technology, wireless energy transmission system, energy harvesting from the surrounding space, rectenna, scattering matrix, non-system interactions, internal system processes

Abstract

The article consists of three parts. The analysis of existing technologies of wireless power transfer (WPT) is carried out in the first part. It is noted that one of the factors that determines the choice of one or another WPT technology is the distance over which the power is transmitted and the type of electromagnetic (EM) energy used. The essence of WPT technologies in the near zone, Fresnel zone and Fraunhofer zone is explained. A generalized block diagram of the WPT system is presented. Areas of application and trends in the further development of the WPT technologies over short distances using induction and resonance methods, the WPT technologies over long distances, the technology of EM energy harvesting from the surrounding space and its conversion into direct current for powering low-power devices are considered.

The achievements of the team of the antenna laboratory of the Kharkiv National University of Radio Electronics (KhNURE) in the area of WPT are presented in the second part of the article. Namely, the electrodynamics’ approach is considered which is based on a single idea about the functioning of WPT systems and which include antennas and their circuits and ways of excitation with nonlinear elements. The stages of building a nonlinear mathematical model (MM) of the electrodynamics’ level of the WPT system are presented, according to which the entire WPT system, which generally includes the transmitting subsystem and the receiving subsystem, is considered as a single multi-input antenna system with nonlinear characteristics. The proposed MM provides a complete representation of the WPT systems operation of a wide class and purpose, in which fundamentally different WPT technologies are used.

The third part of the article presents new results related to continued research. The analysis of the adequacy of the developed MM of WPT system is carried out. The results of simulation of WPT systems with the induction method of energy transfer (near zone) and their comparison with theoretical and experimental data of other authors showed the reliability and universality of the proposed approach and the MM of WPT system developed on its basis.

References

Shinohara N. Wireless Power Transfer via Radiowaves. John Wiley & Sons. 2014. 238 p.

Nikoletseas S., Yang Y., Georgiadis A. Wireless Power Transfer Algorithms, Technologies and Applications in Ad Hoc Communication Networks. Springer Nature Switzerland AG. 2016. 745 p.

Lu X., Wang P., Niyato D., Kim D.I., Han Z. Wireless charging technologies: Fundamentals, standards, and network applications // IEEE Communications Surveys & Tutorials. 2015. vol. 18, no. 2. P. 1413 – 1452.

Sun T., Xie X., Wang Z. Wireless power transfer for medical microsystems. Springer. 2013.

Сазонов Д.М. Антенны и устройства СВЧ. Москва : Высш. шк., 1988. 432 с.

Грецких Д.В., Гомозов А.В., Цикаловский Н.М., Аль-Самарай Ш.Ф.А. Области применения и современные тенденции развития наноректенн // Технология приборостроения. 2012. №2. С. 36 – 42.

Дьячков П.Н. Электронные свойства и применения нанотрубок. Москва : БИНОМ. Лаборатория знаний, 2011. 488 с.

Слепян Г.Я., Максименко С.А., Кужир П.П. Современные тенденции развития наноэлектромагнетизма: аналитический обзор [Электронний ресурс] // НИУ «Ин-т ядерных проблем» БГУ. 2012. Режим доступу: http://elib.bsu.by/bitstream/123456789 /18999/1/fanem_2012.pdf.

Novotny L., N. van Hulst. Antennas for Light // Nat. Photon. 2011. N 5. P. 83 – 90.

Zhu Z. Optical rectenna solar cells using graphene geometric diodes / Z. Zhu, S. Grover, K. Krueger, G. Moddel // 37th IEEE Photovoltaic Specialists Conference. 2011. P. 20 – 22.

Joshi S. Infrared Optical Response of Geometric Diode Rectenna Solar Cells / S.Joshi, Z. Zhu, S. Grover, G. Moddel // 38th IEEE Photovoltaic Specialists Conference. 2012. Р. 2976 – 2978.

Kotter D.K., Novack S.D., Slafer W.D., Pinhero P.J. Theory and manufacturing processes of solar nanoantenna electromagnetic collectors // Journal of Solar Energy Engineering-transactions of The Asme. 2010. Vol. 132, N 1. P. 1 – 10.

Pan Y., Rosamond M.C., McDonald A. at al. Design and performance of micro-rectenna arrays for thermal energy harvesting // 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). 2015. P. 1 – 2.

Qassim Abdullahi S., Rahil Joshi, Symon K. Podilchak, Sadeque R. Khan, at al. Design of a wireless power transfer system for assisted living applications // Desmulliez and Apostolos Georgiadis Wireless Power Transfer. 2019. Vol. 6, Is. 1. P. 41 – 56.

Mickel Budhia, Grant A. Covic, John T. Boys. Design and Optimization of Circular Magnetic Structures for Lumped Inductive Power Transfer Systems // IEEE Transactions on Power Electronics. 2011. Vol. 26, Is. 11. P. 3096 – 3108.

Taylor M. Fisher, Kathleen Blair Farley, Yabiao Gao, Hua Bai and Zion Tsz Ho Tse. Electric vehicle wireless charging technology: a state-of-the-art review of magnetic coupling systems // Wireless Power Transfer. 2014. Vol. 1, Is. 02. P 87 – 96.

Hassler M., Atasoy O., Twelker K., Kesler M., Birkendahl J. and Krammer J. A comparison on simulated, analytic, and measured impedance values for an inductive power transfer system // Wireless Power Transfer. 2020. Vol. 7, Is. 1. P. 51 – 59.

Poguntke T., Schumann P., Ochs K. Radar-based living object protection for inductive charging of electric vehicles using two-dimensional signal processing // Wireless Power Transfer. 2017. Vol. 4, Spec. Is. 2: Contactless Charging for Electric Vehicles. P. 88–97.

Zhang Z., Zhang B., Deng B., Wei X. and Wang J. Opportunities and challenges of metamaterial-based wireless power transfer for electric vehicles // Wireless Power Transfer. 2018. Vol. 5(1). P. 9 – 19.

Jing Zhou, Kan Guo, Zhonghua Chen, Hui Sun and Sideng Hu. Design considerations for contact-less underwater power delivery: a systematic review and critical analysis // Wireless Power Transfer. 2020. Vol. 7, Is. 1. P. 76 – 85.

Wang X., Liu Z., Zhang T. Flexible sensing electronics for wearable/attachable health monitoring // Small. 2017. Vol. 13(25). P. 1 – 19.

Curry E.J., Ke K., Chorsi M.T., Wrobel K.S., at al. Biodegradable piezoelectric force sensor // Proc. Natl. Acad. Sci. USA. 2018, Vol. 115. P. 909 – 914.

Devansh R. Agrawal, Yuji Tanabe, Desen Weng, Andrew Ma, at al. Conformal phased surfaces for wireless powering of bioelectronic microdevices // Nature Biomedical Engineering. 2017. Vol. 1, Article number: 0043. P. 1 – 9.

Mustafa F. Mahmood, Saleem Lateef Mohammed, Sadik Kamel Gharghan, Ali Al-Naji, and Javaan Chahl. Hybrid Coils-Based Wireless Power Transfer for Intelligent Sensors // Sensors. 2020. Vol. 20(9). P. 1 – 24.

Monti G., Arcuti P., Tarricone L. Resonant Inductive Link for Remote Powering of Pacemakers // IEEE Transactions On Microwave Theory And Techniques. 2015. Vol. 63, No. 11. P. 3814 – 3822.

Moore J., Castellanos S., Xu S., Wood B., at al. Applications of Wireless Power Transfer in Medicine: State-of-the-Art Reviews // Annals of Biomedical Engineering. 2019. Vol. 47, No. 1. P. 22 – 38.

Xiong Q. Wireless Charging Device for Artificial Cardiac Pacemaker / Quan Xiong // International Conference on Information Technology and Management Innovation (ICITMI). 2015. P. 765–768.

Brown W.C. Experimental involving a microwave beam to power and position a helicopter // IEEE Transactions on Aerospace and Electronic Systems. 1969. Vol. AES-5, Is. 5. P. 692 – 702.

Brown W.C. Adapting Microwave Techniques to Help Solve Future Energy Problems //G MTT International Microwave Symposium Digest of Technical Papers. 1973. Vol. 73.1. P. 189 – 191.

Brown W.C., Eves E.E. Microwave power transmission and its application to space // IEEE Transactions on Microwave Theory and Techniques. 1992. Vol. 40, No 8. P. 1239 – 1250.

Yang Y., Zhang Y., Duan B., at al. A novel design project for space solar power station (SSPS-OMEGA) // Acta Astronautica. 2016. Vol. 121. P. 51 – 58.

Glaser P.E. An overview of the solar power satellite option // IEEE Transactions on Microwave Theory and Techniques. 1992. Vol. 40, Is. 6. P. 1230 – 1238.

Shinohara N. Power without wires // IEEE Microwave Magazine. 2011. V.12, No 7. P. 64 – 73.

Shoki H. Issues and Initiatives for Practical Use of Wireless Power Transmission Technologies in Japan // Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS), IEEE MTT-S International. 2011. P. 87 – 90.

Возобновляемая энергетика. Пути повышения энергетической и экономической эффективности // Труды Междунар. форума «Возобновляемая энергетика. Пути повышения энергетической и экономической эффективности REENFOR – 2014» ; под. ред. О.С. Попеля, Д.О. Дуникова. Москва : ОИВТ РАН, 2014. 478 с.

Гомозов А.В., Гомозов В.И., Шокало В.М., Грецких Д.В., Аль-Самарай Ш.Ф.А. Передающая подсистема беспроводной передачи энергии к труднодоступным объектам на основе многопозиционной системы излучателей с фокусировкой излучения. Ч. 1 // Радиотехника. 2011. №165. С. 112 – 118.

Гомозов А.В., Гомозов В.И., Шокало В.М., Грецких Д.В., Аль-Самарай Ш.Ф.А. Передающая подсистема беспроводной передачи энергии к труднодоступным объектам на основе многопозиционной системы излучателей с фокусировкой излучения. Ч. 2 // Радиотехника. 2011. №167. С. 18 – 24.

Gomozov A.V., Shokalo V.M., Gretskih D.V., Al-Sammarrai Sh.F.A. Principles of construction and application of microwave systems for wireless energy transmission of ground and space basing // Computational problems of electrical engineering. 2012. Vol. 2, № 1. P. 15 – 23.

Shimokura N., Kaya N., Shinohara M., Matsumo H. Point-to-point microwave power transmission experiment // Scripta Technica, Inc. Electr Eng Jpn. 1997. No 120(1). P. 33 – 39.

Applications of wireless power transmission via radio frequency beam / Report ITU-R SM.2392-0. 2016. 33 p.

MHI Successfully Completes Ground Demonstration Testing of Wireless Power Transmission Technology for SSPS – Expanding the Potential for New Industrial Applications [Электронний ресурс] // Press information. 2015. Режим доступу до ресурсу: http://www.mhi-global.com/news/story/1503121879.html.

East T. A self-steering array for the SHARP microwave-powered aircraft // IEEE Transactions on Antennas and Propagation. 1992. Vol. 40, No 12. P. 1565 – 1567.

Sohlesak J.J., Alden A., Ohno T. SHARP (Stationary high altitude platform): rectenna and low altitude tests // Globecom 85: IEEE Glob. Telecommun. conf. New Orleans. 1985. Vol. 2. P. 960 – 964.

Fujino Y., Fujita M., Kaya N., et al. A Dual Polarization Microwave Power Transmission System for Microwave Propelled Airship Experiment // ISAP’96 Proceedings, Chiba, Japan. 1996. P. 393 – 396.

Fujino Y., Fujita M. Development of a High-Efficiency Rectenna for Wireless Power Transmission – Application to Microwave-Powered Airship Experiment // J. Commun. Res. Lab. 1999. Vol. 43, No 3. P. 367 – 37.

Gavan J., Tapuchi S. Microwave wireless-power transmission to high-altitude-platform systems // URSI Radio Science Bulletin. 2010. Vol. 2010, No 334. P. 25 – 42.

Dickinson R.M. Power in the sky: Requirements for microwave wireless power beamers for powering high-altitude platforms // IEEE Microwave Magazine. 2013. Vol. 14, Is. 2. P. 36 – 47.

Yuichiro O., Naohiro T. Study of Electric Aircraft Charged by Beamed Microwave Power // IHI Engineering Review. 2015. Vol. 48, No 2. P. 29 – 32.

Shimamura K., Sawahara H., Oda A., et al. Feasibility study of microwave wireless powered flight for micro air vehicles // Wireless Power Transfer. 2017. Vol. 4, No 2. P. 146 – 159.

Takabayashi N., Shinohara N., Mitani T., Furukawa M., Fujiwara T. Rectification Improvement With Flat-Topped Beams on 2.45-GHz Rectenna Arrays // IEEE Transactions on Microwave Theory and Techniques. 2020. Vol. 68, Is. 3. P. 1151 – 1163.

Гомозов А.В., Грецких Д.В., Цикаловский Н.М., Шарапова Е.В. Радиотехническая система беспроводного энергоснабжения беспилотных летательных аппаратов // Космическая техника. Ракетное вооружение. Сб. науч.-техн. ст. ГП'' КБ Южное''. 2015. №1 (108). C. 36 – 41.

Sherazi H.H.R., Zorbas D., O’Flynn B. A Comprehensive Survey on RF Energy Harvesting: Applications and Performance Determinants // Sensors. 2022, Vol. 22, No. 2990. P. 1 – 36.

Грецких Д.В., Лихограй В.Г., Щербина А.А., Сакало С.Н., Ткачева Т.С. Система контроля подвески автомобиля на основе технологий беспроводной передачи энергии // Радиотехника. 2020. Вып. 201. С. 52 – 63.

Gretskih D., Luchaninov A., Lykhograi V., Shcherbina A., Sakalo S. Researching the possibility of wireless energy transmission for the power supply condition monitoring system of a car's suspension // IEEE Ukrainian Microwave Week. 2020. P. 105 – 109.

Powercast Corporation. TX91501b Powercaster®Transmitter. [Электронний ресурс] // Режим доступу: https://www.powercastco.com/prod ucts/powercaster-transmitter (4 січня 2021).

Powercast Corporation. Powercaster® Powerspot. [Электронний ресурс] // Режим доступу: https://www.powercastco.com/products/powersp (4 січня 2021).

Ossia. Ossia’s Cota: Real Wireless Power. [Электронний ресурс] // Режим доступу: https://www.ossia.com/cota (4 січня 2021).

Ren J., Hu J., Zhang D., Guo H., Zhang Y., Shen X. RF energy harvesting and transfer in cognitive radio sensor networks: Opportunities and challenges // IEEE Commun. Mag. 2018. Vol. 56. P. 104 – 110.

Stoopman M., Keyrouz S., Visser H., Philips K., Serdijn W. A self-calibrating RF energy harvester generating 1V at 26.3 dBm // Proceedings of the 2013 Symposium on VLSI Circuits, Kyoto, Japan. 2013. P. 226 – 227.

Stoopman M., Keyrouz S., Visser H.J., Philips K., Serdijn W.A. Co-design of a CMOS rectifier and small loop antenna for highly sensitive RF energy harvesters // IEEE J. Solid-State Circuits. 2014. Vol. 49. P. 622 – 634.

Sample A.P., Parks A.N., Southwood S., Smith J.R. Wireless ambient radio power. In Wirelessly Powered Sensor Networks and Computational RFID // Springer: Berlin/Heidelberg, Germany, 2013. P. 223 – 234.

Papotto G., Carrara F., Finocchiaro A., Palmisano G. A 90-nm CMOS 5-Mbps crystal-less RF-powered transceiver for wireless sensor network nodes // IEEE J. Solid-State Circuits. 2013. Vol. 49. P. 335 – 346.

Gubbi J., Buyya R., Marusic S., Palaniswami M. Internet of Things (IoT): A vision, architectural elements, and future directions // Future Gener. Comput. Syst. 2013. Vol. 29. P. 1645 – 1660.

Asghari P., Rahmani A.M., Javadi H.H.S. Internet of Things applications: A systematic review // Comput. Netw. 2019. Vol. 148. P. 241 – 261.

Choudhary P., Bhargava L., Sing, V., Choudhary M., Kumar Suhag A. A survey–Energy harvesting sources and techniques for internet of things devices // Mater. Today Proc. 2020. Vol. 30. P. 52 – 56.

Alsharif M.H., Kim S., Kuruo˘ glu, N. Energy Harvesting Techniques for Wireless Sensor Networks/Radio-Frequency Identification: A Review // Symmetry. 2019. Vol. 11. Р. 865.

Adila A.S., Husam A., Husi G. Towards the self-powered Internet of Things (IoT) by energy harvesting: Trends and technologies for green IoT // Proceedings of the 2018 2nd International Symposium on Small-Scale Intelligent Manufacturing Systems (SIMS), Cavan, Ireland, 2018. P. 1 – 5.

Krupitzer C., Müller S., Lesch V., Züfle M., at al. A Survey on Human Machine Interaction in Industry 4.0. arXiv 2020, arXiv:2002.01025.

Sherazi H.H.R., Grieco L.A., Imran M.A., Boggia G. Energy-efficient LoRaWAN for Industry 4.0 Applications // IEEE Trans. Ind. Inform. 2020. Vol. 17. P. 891 – 902.

Tahir M.A., Ferrer B.R., Luis J., Lastra M. An Approach for Managing Manufacturing Assets through Radio Frequency Energy Harvesting // Sensors. 2019. Vol. 19. p. 1 – 21.

Tang X., Wang X., Cattley R., Gu F., Ball A.D. Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: A review // Sensors. 2018. Vol. 18. Р. 1 – 39.

Zungeru A.M., Ang L.M., Prabaharan S., Seng K.P. Radio frequency energy harvesting and management for wireless sensor networks. In Green Mobile Devices and Networks: Energy Optimization and Scavenging Techniques; Number 13 in 0 // CRC Press: New York, NY, USA. 2012. P. 341 – 368.

Visser H.J., Vullers R.J.M. RF Energy Harvesting and Transport for Wireless Sensor Network Applications: Principles and Requirements // Proc. IEEE. 2013. Vol. 101. P. 1410 – 1423.

Boisseau S., Despesse G. Energy harvesting, wireless sensor networks & opportunities for industrial applications // EE Times. 2012.

Iyengar A., Kundu A., Pallis G. Healthcare Informatics and Privacy // IEEE Internet Comput. 2018. Vol. 22. P. 29 – 31.

Yang L., Zhou Y.J., Zhang C., Yang X.M., Yang X.X., Tan C. Compact multiband wireless energy harvesting based battery-free body area networks sensor for mobile healthcare // IEEE J. Electromagn. Microwaves Med. Biol. 2018. Vol. 2. P. 109 – 115.

Anwar M., Abdullah A.H., Qureshi K.N., Majid A.H. Wireless body area networks for healthcare applications: An overview // Telkomnika. 2017. Vol. 15. P. 1088 – 1095.

Luo Y., Pu L., Zhao Y. RF Energy Harvesting Sensor Networks for Healthcare of Animals: Opportunities and Challenges // arXiv 2018, arXiv:1803.00106.

Saraereh O.A., Alsaraira A., Khan I., Choi B.J. A hybrid energy harvesting design for on-body Internet-of-Things (IoT) networks // Sensors. 2020. Vol. 20. p. 1 – 17.

Haghi M., Thurow K., Stoll R. Wearable devices in medical internet of things: Scientific research and commercially available devices // Healthc. Inform. Res. 2017. Vol. 23. P. 4 – 15.

Borges L.M., Chávez-Santiago R., Barroca N., Velez F.J., Balasingham I. Radio-frequency energy harvesting for wearable sensors // Healthc. Technol. Lett. 2015. Vol. 2. P. 22 – 27.

Lin C., Chiu C., Gong J. A Wearable Rectenna to Harvest Low-Power RF Energy for Wireless Healthcare Applications // In Proceedings of the 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics(CISP-BMEI), Beijing, China. 2018. P. 1 – 5.

Hande A., Bridgelall R., Bhatia D. Energy harvesting for active RF sensors and ID tags. In Energy Harvesting Technologies // Springer: Berlin/Heidelberg, Germany. 2009. P. 459 – 492.

Aparicio M.P., Bakkali A., Pelegri-Sebastia J., Sogorb, T., Bou V. Radio frequency energy harvesting-sources and techniques. In Renewable Energy: Utilisation and System Integration // Intechopen: London, UK. 2016.

Cui L., Zhang Z., Gao N., Meng Z., Li Z. Radio frequency identification and sensing techniques and their applications: A review of the state-of-the-art // Sensors. 2019. Vol. 19. p. 1 – 23.

Mhatre P., Duche R., Nawale S., Patil P. RF power harvesting system for RFID applications in multiband systems // Proceedings of the 2015 6th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Denton, TX, USA. 2015. P. 1 – 5.

Olgun U., Chen C., Volakis J.L. Wireless power harvesting with planar rectennas for 2.45 GHz RFIDs // Proceedings of the 2010 URSI International Symposium on Electromagnetic Theory, Berlin, Germany. 2010. P. 329–331.

Pellerano S., Alvarado J., Palaskas Y. A mm-Wave Power-Harvesting RFID Tag in 90 nm CMOS // IEEE J. Solid-State Circuits. 2010. Vol. 45. P. 1627 – 1637.

Bakhtiar A.S., Jalali M.S., Mirabbasi S. An RF power harvesting system with input-tuning for long-range RFID tags // Proceedings of 2010 IEEE International Symposium on Circuits and Systems, Paris, France. 2010. P. 4085 – 4088.

Slesinski R.J. Power Harvesting for Actively Powered RFID Tags and Other Electronic Sensors // U.S. Patent App. 12/039,691, 3 September 2009.

Sony S., Laventure S., Sadhu A. A literature review of next-generation smart sensing technology in structural health monitoring // Struct. Control. Health Monit. 2019. Vol. 26. P. 1 – 22.

Srinivasan R., Ali U.H.H. Energy harvesting wireless sensor for achieving self-powered structural health monitoring system // Circuit World. 2020. Vol. 46. P. 307 – 315.

Loubet G., Takacs A., Gardner E., De Luca A., Udrea F., Dragomirescu D. LoRaWAN Battery-Free Wireless Sensors Network Designed for Structural Health Monitoring in the Construction Domain // Sensors. 2019. Vol. 19. P. 1 – 26.

Loubet G., Takacs A., Dragomirescu D. Implementation of a battery-free wireless sensor for cyber-physical systems dedicated to structural health monitoring applications // IEEE Access. 2019. Vol. 7. P. 24679 – 24690.

Sidibe A., Takacs A., Okba A., Aubert H. Design and Characterization of a Compact Rectenna for Structural Health Monitoring Applications // Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA. 2019. P. 1803 – 1804.

Cao S., Li J. A survey on ambient energy sources and harvesting methods for structural health monitoring applications // Adv. Mech. Eng. 2017. Vol. 9. P. 1 – 14.

Шифрин Я.С., Лучанинов А.И., Шокало В.М. Приемно-выпрямительные элементы ректенных систем. Харьков : Харьк. ин-т радиоэлектроники: Деп. в УкрНИИНТИ. 31.03.89. № 941–Ук89, 1988. 182 с.

Шокало В.М., Лучанинов А.И., Рыбалко А.М., Грецких Д.В. Крупноапертурные антенны-выпрямители систем беспроводной передачи энергии микроволновым лучом. Харьков : Коллегиум, 2006. 308 с.

Шокало В.М., Правда В.І., Усін В.А., Вунтесмері В.С., Грецьких Д.В. Електродинаміка та поширення радіохвиль. Ч.2. Випромінювання та поширення електромагнітних хвиль. Харків : Колегіум, 2010. 435 с.

Gretskih D.V. Electrodynamic Model of a Wireless Power Transmission System / D.V. Gretskih, A.I. Luchaninov, J.V. Vishniakova, V.A. Katrich, M.V. Nesterenko // XXIII International Seminar. Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory. 2018. P. 80 – 85.

Luchaninov A.I. Electrodynamic Approach to Designing WPT Systems with Accounting for Non-system Interactions / A.I. Luchaninov, D.V. Gretskih, A.V. Gomozov, V.A. Katrich, M.V. Nesterenko // IEEE 2nd Ukraine Conference on Electrical and Computer Engineering. 2019. Р. 80 – 85.

Gretskih D. Electrodynamic Approach to Designing Wireless Power Transfer Systems (Internal System Processes) / D. Gretskih, A. Luchaninov, V. Katrich, M. Nesterenko // IV International Conference on Information and Telecommunication Technologies and Radio Electronics. 2019. Р. 1 – 6.

Gretskih D. External Parameters of Wireless Power Transmission Systems / D. Gretskih, A. Luchaninov, А. Gomozov, V. Katrich, M. Nesterenko // XXIV International Seminar. Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory. 2019. Р. 117 – 121.

Грецких Д.В., Лихограй В.Г., Щербина А.А., Гомозов А.В. Внешние параметры систем беспроводной передачи энергии // Радиотехника. 2019. №199. С. 59 – 66.

Gretskih D. Nonlinear integral equations for multi-input radiating structures / D. Gretskih, A. Luchaninov, V. Alieksieiev, V. Katrich, M. Nesterenko // Proceedings of the XXV International Seminar on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory. 2020. P. 97 – 102.

Luchaninov A. Two-level Iterative Algorithm for Solving State Equations of the WPT System / A. Luchaninov, D. Gretskih, V. Alieksieiev at all // 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering. 2022. P. 352 – 357.

Hoang H., Bien F. Maximizing Efficiency of Electromagnetic Resonance Wireless Power Transmission Systems with Adaptive Circuits // Chapters 11 in: Wireless Power Transfer – Principles and Engineering Explorations Ed. by K.Y. Kim, InTech. 2012. P. 207 – 226.

Hirayama H. Equivalent Circuit and Calculation of Its Parameters of Magnetic-Coupled-Resonant Wireless Power Transfer // Chapters 6 in: Wireless Power Transfer – Principles and Engineering Explorations Ed. by K.Y. Kim, InTech. 2012. P. 117 – 132.

Dionigi M., Mongiardo M. Magnetically Coupled Resonant Wireless Power Transmission Systems with Relay Elements // IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications. 2012. P. 223 – 226.

Published

2022-12-30

How to Cite

Alieksieiev, V., Gretskih, D., Gavva, D., & Lykhograi, V. (2022). Wireless power transmission technologies. Radiotekhnika, 4(211), 114–132. https://doi.org/10.30837/rt.2022.4.211.09

Issue

Section

Articles