The use of various materials as a metal component in a metamaterial thermophotovoltaic emitter
DOI:
https://doi.org/10.30837/rt.2022.3.210.13Keywords:
metamaterials, thermophotoelectric devices, emitter, melting pointAbstract
Thermophotovoltaics (TPV) is a process by which photons emitted by a heat emitter are converted into electrical energy by a photovoltaic cell. Selective heat emitters that can survive temperatures at or above 1000°C have the potential to significantly improve the energy conversion efficiency of a PV cell by limiting the emission of photons with energies below the band gap energy of a photovoltaic cell.
Waste heat can be a valuable source of energy if we can find a way to harvest it efficiently. Deviations from ideal absorption and ideal blackbody behavior lead to light losses. For selective emitters, any light emitted at wavelengths outside the bandgap energy of the photovoltaic system may not be efficiently converted, reducing efficiency. In particular, it is difficult to avoid emission associated with phonon resonance for wavelengths in the deep infrared, which cannot be practically converted. An ideal emitter would not emit light at wavelengths other than the bandgap energy, and much TFP research is devoted to designing emitters that approximate better this narrow emission spectrum.
TPV systems usually consist of a heat source, a radiator and a waste heat removal system. TFV cells are placed between the emitter, often a metal or similar block, and the cooling system, often a passive radiator.
Efficiency, heat resistance and cost are the three main factors for choosing a TPF emitter. The efficiency is determined by the absorbed energy relative to the incoming radiation. High temperature operation is critical because efficiency increases with operating temperature. As the temperature of the emitter increases, the radiation of the black body shifts toward shorter waves, which allows for more efficient absorption by photocells. This paper demonstrates the feasibility of using materials such as platinum, gold, and nichrome as a metal component in a metamaterial emitter with respect to their absorption and thermal stability.
References
Explaining metamaterials and metasurfaces – properties and applications [Інтернет-посилання]. nanowerk.com (2021). https://www.nanowerk.com/what-are-metamaterials.php
Yongzheng Wen, Ji Zhou. Metamaterial route to direct photoelectric conversion. State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People’s Republic of China, 2019
C. M. Watts, X. Liu, and W. J. Padilla. Metamaterial Electromagnetic Wave Absorbers. Adv. Mater. 24, OP98–OP120 (2012).
N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen // Nano Lett. 10, 2342–2348 (2010).
M. Yan // Opt. 15, 025006 (2013).
J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu // Appl. Phys.Lett. 96, 251104 (2010).
W.-C. Chen, M. Koirala, X. Liu, T. Tyler, K. G. West, C. M. Bingham, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, e-print arXiv:1212.2868v1.
X. Liu, T. Starr, A. F. Starr, and W. J. Padilla // Phys. Rev. Lett. 104, 207403 (2010).
W. J. Padilla. FiO/LS Technical Digest, OSA, 2012.
X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla // Phys. Rev. Lett. 107, 045901 (2011).
T. Maier and H. Brueckl // Opt. Lett. 35(22), 3766 (2010).
J. Hao, L. Zhou, and M. Qiu // Phys. Rev. B 83, 165107 (2011).
S. Lin, J. G. Fleming, and J. Moreno, Sand Report No. SAND2003-0845, Sandia National Laboratories, March 2003. Appl. Phys. Lett. 104, 201113 (2014)
J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho // Lett. Nat. 417, 52 (2002).
J. M. Gee, J. B. Moreno, S. Y. Lin, and J. G. Fleming // Conference Record of the 29th IEEE Photovoltaic Specialists Conference 2002 (IEEE, Piscataway, NJ), pp. 896–899.
H. Sai and H. Yugami // Appl. Phys. Lett. 85, 3399 (2004).
S. Y. Lin, J. G. Fleming, and J. B. Moreno // Appl. Phys. Lett. 83(2), 380 (2003).
G. B. Farfan, M. F. Su, M. M. Reda Taha, and I. El-Kady // Proc. SPIE 7609, 76090V (2010).
M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas // Appl. Phys. Lett. 81(25), 4685 (2002).
I. Celanovic, F. O’Sullivan, N. Jovanovic, M. Qi, and J. Kassakian // Proc. SPIE 5450, 416 (2004).
S.-Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg // Phys. Rev. B 62(4), R2243 (2000).
H.-K. Fu, Y.-W. Jiang, M.-W. Tsai, S.-C. Lee, and Y.-F. Chen, J. Appl.Phys. 105, 033505 (2009).
N. Jovanovic, I. Celanovic, and J. Kassakian // AIP Conf. Proc. 890, 47 (2007).
I. Celanovic, N. Jovanovic, and J. Kassakian // Appl. Phys. Lett. 92, 193101 (2008).
D. L. C. Chan, M. Soljacˇic´, and J. D. Joannopoulos // Opt. Express 14(19), 8785 (2006).
V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic // Energy Environ. Sci. 5, 8815 (2012).
Jing Wang, Yiting Chen, Xi Chen, Jiaming Hao, Min Yan, and Min Qiu. Photothermal reshaping of gold nanoparticles in a plasmonic absorber // Opt. Express 19, 14726-14734 (2011)
Robert J. Bell, Mark A. Ordal, and Ralph W. Alexander. Equations linking different sets of optical properties for nonmagnetic materials // Appl. Opt. 24, 3680-3682 (1985)
X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco Jr., and J. A. Kong. Robust method to retrieve the constitutive effective parameters of metamaterials // Phys. Rev. E 70, 016608 (2004).
D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients // Phys. Rev. B 65, 195104 (2002).
Corey Shemelya, Dante DeMeo, Nicole Pfiester Latham, Xueyuan Wu, Chris Bingham, Willie Padilla, Thomas E. Vandervelde. Stable high temperature metamaterial emitters for thermophotovoltaic applications // Appl. Phys. Lett. 104, 201113 (2014).
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).