Directional diagrams of acoustic radiation from unmanned aerial vehicles

Authors

  • V.M. Kartashov Харківський національний університет радіоелектроніки, Ukraine https://orcid.org/0000-0001-8335-5373
  • V.M. Oleynikov Харківський національний університет радіоелектроніки, Ukraine https://orcid.org/0000-0002-3358-5987
  • I.S. Seleznyov Харківський національний університет радіоелектроніки, Ukraine https://orcid.org/0000-0002-0731-7540
  • O.V. Kartashov Харківський національний університет радіоелектроніки, Ukraine

DOI:

https://doi.org/10.30837/rt.2022.3.210.10

Keywords:

unmanned aerial vehicle, experiment, detection, signal, spectrum, acoustic radiation, directional diagram

Abstract

When solving the urgent task of detecting small unmanned aerial vehicles (UAVs) by their acoustic radiation (AR), there is a need to study the AR characteristics of UAVs. Therefore, considerable attention is paid in the literature to theoretical and experimental studies of the structure and parameters of the sound field created by UAVs.

This article is devoted to the experimental study of the directional diagrams of the acoustic radiation from the DJI Phantom 3 unmanned aerial vehicle. The UAV AR recording experiment was conducted in a "silenced" chamber, the walls of which are covered with sound-absorbing panels with a surface of a special geometric shape. The experimental setup includes the UAV mounted on a boom, a microphone for sound recording, and a boom for the microphone.

Studies of the structure and parameters of the sound field of the quadcopter have shown that the spectra of the emitted signal have pronounced harmonic components with frequencies multiples of the propeller rotation frequency. The spectral components have the greatest power in the frequency range up to 500 Hz, where the first harmonic has the largest amplitude, and then the spectrum components decrease to the ambient noise level.

Obtained two-dimensional and three-dimensional directional diagrams of the UAV AR with and without propellers when only the aircraft engine is operating. It is shown that in the absence of screws, the acoustic radiation is much weaker in level. The experimental data was also presented in the form of three-dimensional AR diagrams for the four harmonics of the acoustic signal, and it was analyzed what changes in the spatial orientation of the UAV AR are
observed based on changes in the three-dimensional figure for each of the radiation harmonics.

It is shown that the spatial distribution of both the total energy (over the entire frequency range) of the acoustic signal and the energy of its individual spectral (harmonic) components is significantly anisotropic. It follows from this conclusion that the range of UAV detection and observation in real conditions is a statistical value that depends on the angle of its observation.

References

Кошкин Р.П. Беспилотные авиационные системы. Москва : Стратегические приоритеты, 2016. 676 с.

Ситнік О.В., Карташов В.М. Радіотехнічні системи : навч. посіб. Харків : Компанія СМІТ, 2009. 430 с.

Kartashov V., Oleynikov V., Koryttsev I., Zubkov O., Babkin S., Sheiko, S. Processing and Recognition of Small Unmanned Vehicles Sound Signals. International Scientific-Practical Conference on Problems of Infocommunications Science and Technology, PIC S and T 2018 – Proceedings 31 January 2019. P. 392 – 396.

Oleynikov V., Zubkov O., Kartashov V., Koryttsev I., Sheiko S., Babkin S. Experimental estimation of direction finding to unmanned air vehicles algorithms efficiency by their acoustic emission // 2019 International Scientific-Practical Conference «Problems of Infocommunications – Science and Technology, PIC S and T. 2019 – Proceeding». 2019. P.175 – 178.

Sadasivan S. Acoustis siqnature of an unmanned air vehicle – exploitation for aircraft localisation and parameter estimation / S. Sadasivan, M. Gurubasavaraj, S.R. Sekar // Eronautical DEF SCI J. 2001. Vol. 51, № 3.Р. 279 – 283.

Massey K. Noise Measurements of Tactical UAVs / K. Massey, R. Gaeta // Georgia Inst. of Technology / GTRI / ATAS, Atlanta. 16th AIAA / CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics, 2010. P. 1 – 16.

Marino L. Experimental analysis of UAV-propellers noise // 16th AIAA/CEAS Aeroacoustics Conference. University "La Sapienza", Rome, Italy. American Institute of Aeronautics and Astronautics, 2010. P. 1 – 14.

Pham T. TTCP AG-6: Acousting detection and tracking of UAVs / T.Pham, N.Srour // U.S. Army Research Laboratory. Proc. of SPIE. 2004. Vol. 54. P. 24 – 29.

Zelnio A.M. Detection of small aircraft using an acoustic array. Thesis. B.S. // Electrical Engineering, Wright State University. 2007. 55 p.

G. Sinibaldi, L. Marino. Experimental analysis on the noise of the propellers for small UAV // Applied Acoustics. 74 (2013). P.79 – 88.

Nanyaporn Intaratep, W. Nathan Alexander, William J. Devenport, Sheryl M. Grace, Amanda Dropkin. Experimental Study of Quadcopter Acoustics and Performance at Static Thrust Conditions // Aeroacoustics Conferences 30 May – 1 June, 2016, Lyon, France 22nd AIAA/CEAS Aeroacoustics Conference. P. 1 – 6.

Kartashov V.M., Oleynikov V.N, Sheyko S.A., Babkin S.I., Koryttsev I.V., Zubkov O.V., Anokhin M.A. Information characteristics of sound radiation of small unmanned aerial vehicles // Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika). 2018. Vol. 77 (10). P. 915 – 924.

Козерук С.О., Коржик О.В. Виявлення малих літальних апаратів за акустичним випромінюванням // Visnyk NTUU KPI Series Radiotekhnika Radiobuduvannia. 2019. Iss. 76. P. 15 – 20.

Мошков П.М., Самохин В.Ф. Оценка влияния числа лопастей и диаметра на шум воздушного винта // Вестник Самарского ун-та. Аэрокосмическая техника, технологии и машиностроение. 2016. Т. 15, No 3. С. 25 – 34.

Заславский Ю.М., Заславский В.Ю. Акустический шум низколетящего квадрокоптера // NOUSE Theory and Practice. 2019. Т.5, № 3. С.21 – 27.

Oleynikov V. M., Kartashov V. M., Babkin S. I., Zubkov O. V., Koryttsev I. V., Sheyko S. A., Seleznov I. S. Structure and parameters of propeller unmanned aerial vehicles' sound fields // Telecommunications and Radio Engineering. 2020. Vol. 79, Iss. 17. P. 1539 – 1550.

Карташов В. М., Олейников В. Н., Шейко С. А., Бабкин С. И., Корытцев И. В., Зубков О. В. Особен-ности обнаружения и распознавания малых беспилотных летательных аппаратов // Радиотехника. 2018. Вып. 195. С. 235 – 243.

Published

2022-09-28

How to Cite

Kartashov, V. ., Oleynikov, V. ., Seleznyov, I. ., & Kartashov , O. . (2022). Directional diagrams of acoustic radiation from unmanned aerial vehicles. Radiotekhnika, 3(210), 128–140. https://doi.org/10.30837/rt.2022.3.210.10

Issue

Section

Articles