Analysis of acoustic direction finding methods for unmanned aerial vehicles

Authors

  • V.М. Kartashov Харківський національний університет радіоелектроніки, Ukraine https://orcid.org/0000-0001-8335-5373
  • M.V. Rybnykov Харківський національний університет радіоелектроніки, Ukraine https://orcid.org/0000-0003-1340-8788
  • A.V. Kartashov Харківський національний університет радіоелектроніки, Ukraine
  • V.А. Pososhenko Харківський національний університет радіоелектроніки, Ukraine https://orcid.org/0000-0003-0867-9161

DOI:

https://doi.org/10.30837/rt.2022.3.210.08

Keywords:

unmanned aerial vehicle, detection complex, direction finding station, sodar, microphone array, aperture, signal processing

Abstract

Currently, classical means of detecting objects do not provide the necessary efficiency for detecting small UAVs, and acoustic location among the known methods for their observation is the most cost-effective solution.

The article analyzes the well-known methods of direction finding of acoustic signals in order to select algorithms for processing UAV signals. Obtaining qualitative indicators of the analyzed algorithms was carried out by the method of statistical computer modeling in the Matlab environment.

Based on the simulation results, it is shown that classical methods are the most stable under conditions of low signal-to-noise ratios. The GCC-PHAT direction finding algorithm, based on determining the difference in the time of arrival of a signal at spaced points, is computationally economical and simple enough to determine the direction to the UAV, but it is not capable of distinguishing more than one radiation source within the diagram orientation. Beamforming methods are also relatively easy to implement and computationally efficient, and are more robust at low signal-to-noise ratios. The SRP-NAM algorithm has a greater accuracy in determining angles than SRP-PHAT, so it can be an adequate replacement for the SRP-PHAT algorithm.

High-resolution methods provide better directional resolution than classical methods, which, in the case of a limited microphone array aperture, is a positive factor in the design of an UAV direction finding station. High resolution methods were considered: non-coherent MUSIC, non-coherent normalized MUSIC and TOPS method. It is shown that incoherent MUSIC gives poor results in distinguishing close UAV signals, since unequal estimates of the entire frequency range are concentrated during bearing formation. The incoherent normalized MUSIC algorithm is able to efficiently use the entire frequency range of the UAV acoustic signal. The TOPS algorithm is inferior to the incoherent normalized MUSIC algorithm, and on the other hand, it does not require a priori estimates of the number of radiation sources.

References

Макаренко С. И., Тимошенко А. В., Васильченко А. С. Анализ средств и способов противодействия беспилотным летательным аппаратам. Ч. 1. Беспилотный летательный аппарат как объект обнаружения и поражения // Системы управления, связи и безопасности. 2020. № 1. С. 109-146.

Daobilige Su / Robotic Sound Source Mapping using Microphone Arrays / thesis / University of Technology Sydney / 2017.

Карташов В.М., Корытцев И.В., Олейников В.Н., Зубков О.В., Бабкин С.И., Шейко С.А., Селезнев И.С. Алгоритмы пеленгации беспилотных летательных аппаратов по их акустическому излучению // Радиотехника. 2019. Вып. 196. C. 22-31.

Iqbal Muhammad Amjad., Zhao Zhao., Xu ZhiYong., Saad Ur Rehman,. 3-D Localization of UAV and Detection based on Harmonics Index and Spectral Entropy Criteria To cite this article // OP Conference Series Materials Science and Engineering 853 012037.

A. Sedunov, H. Salloum, A. Sutin, N. Sedunov and S. Tsyuryupa. UAV Passive Acoustic Detection // IEEE International Symposium on Technologies for Homeland Security (HST), 2018, P. 1-6..

Карташов В. М., Олейников В. Н., Шейко С. А., Бабкин С. И., Корытцев И. В., Зубков О. В. Особенно-сти обнаружения и распознавания малых беспилотных летательных аппаратов // Радиотехника. 2018. Вып. 195. С. 235-243.

Cabell, Randolph, Robert G. McSwain and Ferdinand W. Grosveld. Measured Noise from Small Unmanned Aerial Vehicles // Noise-Con 2016.

H. Krim and M. Viberg, Two decades of array signal processing research: the parametric approach // IEEE Signal Processing Magazine, vol. 13, P. 67-94, July 1996.

C. Knapp., G. Carter. The generalized correlation method for estimation of time delay // IEEE Transactions on Acoustics, Speech, and Signal Processing. 1976.Vol. 24. P. 320–327.

A. Ramamurthy, H. Unnikrishnan and K. D. Donohue. Experimental performance analysis of sound source detection with SRP PHAT-β // IEEE Southeastcon. 2009. P. 422-427.

Tribikram Kundu. Acoustic source localization // ISSN 0041-624X Vol. 54, Issue 1, 2014. P. 25-38.

D. Salvati., C. Drioli., G. L. Foresti. Incoherent Frequency Fusion for Broadband Steered Response Power Algorithms in Noisy Environments // IEEE Signal Process. 2014. Lett, Vol. 21, Num. 5.P. 581-585.

Wang Ben., Wang Wei., Gu Yujie., Lei Shujie. Underdetermined DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Array // Sensors. 2017. 17. 702.

I.A. McCowan. Robust Speech Recognition using Microphone Arrays, PhD Thesis / Queensland University of Technology, Australia, 2001.

S. Visuri, H., V. Koivunen, Subspace-based direction-of-arrival estimation using nonparametric statistics // IEEE Transactions on Signal Processing. 2001. Vol. 49, no. 9. P. 2060-2073.

Олейников В.Н., Зубков О.В., Карташов В.М., Корытцев И.В., Бабкин С.И., Шейко С.А., Селезнев И.С. Экспериментальная оценка эффективности аглоритмов пеленгования беспилотных летательных аппаратов по акустическому излучению // Радиотехника. 2019. Вып. 199. С. 29-37.

Kartashov V.M., Oleynikov V.N., Zubkov O.V., Korytsev I.V., Babkin S. I., Sheiko S.A., Kolendovskaya M.M. Spatial-temporal Processing of acoustic Signals of Unmanned Aerial Vehicles // Telecommunications and Radio Engineering. New York. 2020. Vol. 79, №9. P.769-780. DOI: 10.1615/TelecomRadEng.v79.i9.40

T. Engin Tuncer., Benjamin Friedlander / Classical and Modern Direction-of-Arrival Estimation, 2009.

Feng-Gang Yan., Zhi-Kun Chen., Ming-Jian Sun., Yi Shen., Ming Jin, Two-Dimensional Direction-of-Arrivals Estimation Based on One-Dimensional Search Using Rank Deficiency Principle // International Journal of Antennas and Propagation. 2015, Article ID 127621, 8 pages, 2015.

H. Akaike. A new look at the statistical model identification / Automatic Control // IEEE Transactions on. Dec 1974. Vol. 19, no. 6. P. 716–723.

M. Wax., T. Kailath. Detection of signals by information theoretic criteria / Acoustics, Speech and Signal Processing // IEEE Transactions on. Apr 1985. Vol. 33, no. 2. P. 387–392.

M. Wax, T.-J. Shan and T. Kailath. Spatio-temporal spectral analysis by eigenstructure methods // IEEE Trans. Acoust. Speech Signal Process, Aug. 1984. Vol. ASSP-32, no. 4. P. 817-827.

Oleynikov V.N., Kartashov V.M., Babkin S. I., Zubkov O.V., Korytsev I.V., Sheiko S.A., Seleznov I.S. Structure and Parameter Unmanned Aerial Vehicles Sound Fields // Telecommunications and Radio Engineering. New York, 2020. Vol. 79, №17. P. 1539-1550.

Published

2022-09-28

How to Cite

Kartashov, V. ., Rybnykov, M. ., Kartashov, A. ., & Pososhenko, V. . (2022). Analysis of acoustic direction finding methods for unmanned aerial vehicles. Radiotekhnika, 3(210), 104–112. https://doi.org/10.30837/rt.2022.3.210.08

Issue

Section

Articles