New continuous-discrete model for wireless sensor networks security

Authors

DOI:

https://doi.org/10.30837/rt.2022.3.210.07

Keywords:

IoT, wireless network, security model, national cybersecurity

Abstract

A wireless sensor network (WSN) is a group of "smart" sensors with a wireless infrastructure designed to monitor the environment. This technology is the basic concept of the Internet of Things (IoT). The WSN can transmit confidential information while working in an insecure environment. Therefore, appropriate security measures must be considered in the network design. However, computational node constraints, limited storage space, an unstable power supply, and unreliable communication channels, and unattended operations are significant barriers to the application of cybersecurity techniques in these networks. This paper considers a new continuous-discrete model of malware propagation through wireless sensor network nodes, which is based on a system of so-called dynamic equations with impulsive effect on time scales.

References

Liu B. Malware propagations in wireless ad hoc networks / B. Liu, W. Zhou, L. Gao, H. Zhou, T. H. Luan, S. Wen // IEEE Trans. Dependable Secure. Comput. 2018. Vol. 15. P. 1016–1026.

Wu X. Nodes availability analysis of NB-IoT based heterogeneous wireless sensor networks under malware infection / X. Wu, Q. Cao, J. Jin, Y. Li, H. Zhang // Wirel. Commun. Mob. Comput. 2019. Vol. 2019.

Queiruga-Dios A., Encinas A. H., Martín-Vaquero J., Encinas L. H. Malware propagation models in wireless sensor networks: a review, 2016 // International Joint Conference «SOCO’16-CISIS’16-ICEUTE’16». 2017. Vol. 527. P. 648–657.

Zhu L., Zhao H., Wang X. Stability and bifurcation analysis in a delayed reaction-diffusion malware propagation model // Comput. Math. Appl. 2015. Vol. 69. P. 852–875.

Feng L. Modeling and stability analysis of worm propagation in wireless sensor network / L. Feng, L. Song, Q. Zhao, H. Wang // Math. Probl. Eng. 2015. Vol. 2015. P. 1–8.

Shen S. A non-cooperative non-zero-sum game-based dependability assessment of heterogeneous WSNs with malware diffusion / S. Shen, H. Ma, E. Fan, K. Hu, S. Yu, J. Liu, Q. Cao // J. Netw. Comput. Appl. 2017. Vol. 91. P. 26–35.

Acarali D. Modelling the spread of botnet malware in IoT-based wireless sensor networks / D. Acarali, M. Rajarajan, N. Komninos, B. B. Zarpelão // Secur. Commun. Netw. 2019. Vol. 2019. https://doi.org/10.1155/2019/3745619.

Shen S. SNIRD: disclosing rules of malware spread in heterogeneous wireless sensor networks / S. Shen, H. Zhou, S. Feng, J. Liu, Q. Cao // IEEE Access. 2019. Vol. 7. P. 92881–92892.

Wang Y., Li D., Dong N. Cellular automata malware propagation model for WSN based on multi-player evolutionary game // IET Netw. 2018. Vol. 7. P. 129–135.

A. M. del Rey, J. H. Guillén, G. R. Sánchez. Modeling malware propagation in wireless sensor networks with individual-based models // Conference of the Spanish Association for Artificial Intelligence. Springer. Cham. Switzerland. 2016. P. 194–203.

Wang T. Propagation modeling and defending of a mobile sensor worm in wireless sensor and actuator networks / T. Wang, Q. Wu, S. Wen, Y. Cai, H. Tian, Y. Chen, B. Wang // Sensors. 2017. Vol. 17(1). P. 139.

F. K. Batista, Á. M. del Rey, S. Quintero-Bonilla, A. Queiruga-Dios. A SEIR model for computer virus spreading based on cellular automata, 2017 // International Joint Conference «SOCO’17-CISIS’17-ICEUTE’17». 2018. Vol. 649. P. 641–650.

Bose A., Shin K. G. Agent-based modeling of malware dynamics in heterogeneous environments // Secur. Commun. Netw. 2013. Vol. 6. P. 1576–1589.

Hosseini S., Azgomi M. A., Rahmani A. Agent-based simulation of the dynamics of malware propagation in scale-free networks // Simulation. 2016. Vol. 92. P. 709–722. https://doi.org/10.1177/0037549716656060

Batista F. K., del Rey A. M., Queiruga-Dios A. A new individual-based model to simulate malware propagation in wireless sensor networks // Sensors. 2020. Vol 8 (3). P. 410. https://doi.org/10.3390/math8030410.

Bohner M., Peterson A. Dynamic equations on time scales. An introduction with applications. MA. Boston: Birkhauser Boston Inc. 2001.

Boichuk A. A., Samoilenko A. M. Generalized inverse operators and fredholm boundary-value problems. Netherlands. Utrecht: Koninklijke Brill NV. 2004.

Agarwal R. Fredholm boundary value problems for perturbed systems of dynamic equations on time scales / R. Agarwal, M. Bohner, A. Bo˘ichuk, O. Strakh // Mathematical Methods in the Applied Sciences. 2014. https://doi.org/10.1002/mma.3356.

Strakh O. P. Linear noetherian boundary-value problems for impulsive dynamic systems on a time scale // Journal of Mathematical Sciences. 2014. Vol. 201 (3). P. 400–406. https://doi.org/10.1007/s10958-014-1999-4Lee, S.hyun. & Kim Mi Na (2008) This is my paper // ABC Transactions on ECE, Vol. 10, No. 5, pp.120–122.

Downloads

Published

2022-09-28

How to Cite

Kotukh, Y. ., Lubchak, V. ., & Strakh, O. . (2022). New continuous-discrete model for wireless sensor networks security. Radiotekhnika, 3(210), 99–103. https://doi.org/10.30837/rt.2022.3.210.07

Issue

Section

Articles