Comparative analysis of methods for determining the air objects’ coordinates using wide-area multilateration systems

Authors

DOI:

https://doi.org/10.30837/rt.2022.2.209.16

Keywords:

Wide Area MultiLateration, WAM, primary surveillance radar, secondary surveillance radar, air traffic control, MultiLateration, MLAT, air object, coordinates, aircraft responder

Abstract

The presented work considers the place and role of wide-area multi-position airspace surveillance in the information support of airspace control and air traffic control systems. Classification of methods for estimating the coordinates of air objects using various primary measurements of the parameters of received signals in multi-position observation is given. A quantitative assessment of the accuracy in determining the air objects’ coordinates by the considered methods is also given. The capabilities of wide-area multi-position surveillance systems increase significantly when using the principles of constructing a secondary surveillance radar as a non-synchronous network, and an aircraft responder as an open single-channel queuing system with servicing the first correctly received request signal. An unauthorized request from an aircraft responder makes it possible to switch from completely passive methods for detecting and determining the coordinates of an air object to active-passive ones, which provide an increase in the accuracy of solving a coordinate task by dozens of times while maintaining the energy secrecy of a wide-area multi-position observation system. It is shown that the use of active and passive methods for constructing wide-area multi-position observation systems makes it possible to implement goniometric, difference-range, goniometer-range, total-range and goniometer-total-range methods for determining the coordinates of an air object. This increases significantly the number of options for estimating the coordinates of an air object. As a result, it allows improving the quality of information support for users by choosing the optimal method for estimating the coordinates of the observed air objects using various primary measurements of the received signals parameters.

References

A. Koutny and M. Pelant, "Multi-channel degarbling method for SSR replies", 2017 18th International Radar Symposium (IRS), 2017. doi: 10.23919/irs.2017.8008171.

M. Abdalla, M. Barbary, M. Amin and M. El-Ghonami, "Design and Implementation of Proposed Low-Cost Dual-Channel IF Receiver for SSR", 2020 12th International Conference on Electrical Engineering (ICEENG), 2020. doi: 10.1109/iceeng45378.2020.9171699.

X. Du, K. Liao and X. Shen, "Secondary Radar Signal Processing Based on Deep Residual Separable Neural Network", 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), 2020. doi: 10.1109/icpics50287.2020.9202372.

G. Jiang, Y. Fan and H. Yuan, "Assessing the Capacity of Air Traffic Control Secondary Surveillance Radar System", 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 2019. doi: 10.1109/csqrwc.2019.8799146.

V. Andrusevich and I. Obod, "Assessment of the Quality of Information Support by Air Radar Surveillance Systems", Advanced Information Systems, vol. 5, no. 2, pp. 78-82, 2021. Available: 10.20998/2522-9052.2021.2.10.

I. Obod, "Integrated Coordinate-and-Time Support for the Address Inquiry in the Secondary Radar Systems", Telecommunications and Radio Engineering, vol. 53, no. 3, pp. 54-56, 1999. doi: 10.1615/telecomradeng.v53.i3.100.

I. Svyd, I. Obod, O. Maltsev, I. Shtykh, G. Maistrenko and G. Zavolodko, "Comparative Quality Analysis of the Air Objects Detection by the Secondary Surveillance Radar", 2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO), 2019. doi: 10.1109/elnano.2019.8783539.

Á. Jarama, J. López-Araquistain, G. Miguel and J. Besada, "Complete Systematic Error Model of SSR for Sensor Registration in ATC Surveillance Networks", Sensors, vol. 17, no. 10, p. 2171, 2017. doi: 10.3390/s17102171.

O. Peker and D. Akdur, "A Method for Elimination of False IFF Target Reports by Using ISLS and RSLS Techniques", 2019 Signal Processing Symposium (SPSympo), 2019. doi: 10.1109/sps.2019.8881951.

L. Bowden, "The story of IFF (Identification Friend or Foe)", IEE Proceedings A Physical Science, Measurement and Instrumentation, Management and Education, Reviews, vol. 132, no. 6, p. 435, 1985. doi: 10.1049/ip-a-1.1985.0079.

E. El-Badawy, W. EL-Masry, M. Mokhtar and A. Hafez, "A secured chaos encrypted mode-S aircraft identification friend or foe (IFF) system", 2010 4th International Conference on Signal Processing and Communication Systems, 2010. doi: 10.1109/icspcs.2010.5709756.

І. Свид, І. Обод. Завадостійкість радіолокаційних систем ідентифікації за ознакою «свій-чужий». Харків : Друкарня Мадрид, 2021, с. 253. doi: 10/30837/978-617-7988-76-1.

І. Обод, І. Свид, О. Мальцев. Обробка даних радіолокаційних систем спостереження повітряного простору : навчальний посібник. Харків : Друкарня Мадрид, 2021. 255 с.

Q. He, N. Lehmann, R. Blum and A. Haimovich, "MIMO Radar Moving Target Detection in Homogeneous Clutter", IEEE Transactions on Aerospace and Electronic Systems, vol. 46, no. 3, pp. 1290-1301, 2010. doi: 10.1109/taes.2010.5545189.

Q. He and R. Blum, "Diversity Gain for MIMO Neyman–Pearson Signal Detection", IEEE Transactions on Signal Processing, vol. 59, no. 3, pp. 869-881, 2011. doi: 10.1109/tsp.2010.2094611.

J. Liu, J. Han, Z. Zhang and J. Li, "Target detection exploiting covariance matrix structures in MIMO radar", Signal Processing, vol. 154, pp. 174-181, 2019. doi: 10.1016/j.sigpro.2018.07.013.

S. Pleninger, "The Testing of MLAT Method Application by means of Usage low-cost ADS-B Receivers", MAD – Magazine of Aviation Development, vol. 2, no. 7, p. 8, 2014. doi: 10.14311/mad.2014.07.02.

S. Lo and P. Enge, "Capacity Study of Multilateration (MLAT) based Navigation for Alternative Position Navigation and Timing (APNT) Services for Aviation", Navigation, vol. 59, no. 4, pp. 263-279, 2012. doi: 10.1002/navi.25.

M. Garcia, R. Mueller, E. Innis and B. Veytsman, "An enhanced altitude correction technique for improvement of WAM position accuracy", 2012 Integrated Communications, Navigation and Surveillance Conference, 2012. doi: 10.1109/icnsurv.2012.6218375.

I. Obod, I. Svyd, O. Maltsev, G. Zavolodko and S. Leonov, "WAM Systems: Comparative Analysis of Information Support Quality", 2020 IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T), 2020. doi: 10.1109/picst51311.2020.9468085.

J. Stefanski, "Asynchronous wide area multilateration system", Aerospace Science and Technology, vol. 36, pp. 94-102, 2014. doi: 10.1016/j.ast.2014.03.016.

D. He, X. Lu, W. Wang and J. Su, "Analysis of Wide Area Multilateration Localization Accuracy Under Different Stations Layout ond Aircraft Height", DEStech Transactions on Engineering and Technology Research, no., 2017. doi: 10.12783/dtetr/iceta2016/7068.

M. Leeson, Error Analysis for a Wide Area Multilateration System, Qinet-iQ/C&IS/ADC/520896/7/19, 2006.

G. de Miguel Vela, J. B. Portas and J. G. Herrero, "Correction of propagation errors in Wide Area Multilateration systems," 2009 European Radar Conference (EuRAD), 2009, pp. 81-84.

J. Florez Zuluaga, J. Vargas Bonilla, J. Ortega Pabon and C. Suarez Rios, "Radar Error Calculation and Correction System Based on ADS-B and Business Intelligent Tools", 2018 International Carnahan Conference on Security Technology (ICCST), 2018. doi: 10.1109/ccst.2018.8585728.

B. Syd Ali, W. Ochieng, A. Majumdar, W. Schuster and T. Kian Chiew, "ADS-B System Failure Modes and Models", Journal of Navigation, vol. 67, no. 6, pp. 995-1017, 2014. doi: 10.1017/s037346331400037x.

S. Ramasamy, R. Sabatini and A. Gardi, "Cooperative and non-cooperative sense-and-avoid in the CNS+A context: A unified methodology", 2016 International Conference on Unmanned Aircraft Systems (ICUAS), 2016. doi: 10.1109/icuas.2016.7502676.

I. Svyd, I. Obod, O. Maltsev and A. Hlushchenko, "Secondary Surveillance Radar Response Channel Information Security Improvement Method", 2020 IEEE 11th International Conference on Dependable Systems, Services and Technologies (DESSERT), 2020. doi: 10.1109/dessert50317.2020.9125018.

I. Obod, I. Svyd, O. Maltsev, O. Vorgul, G. Maistrenko and G. Zavolodko, "Optimization of the Quality of Information Support for Consumers of Cooperative Surveillance Systems", Data-Centric Business and Applications, pp. 133-155, 2020. doi: 10.1007/978-3-030-43070-2_8.

I. Obod, I. Svyd, O. Maltsev, G. Maistrenko, O. Zubkov and G. Zavolodko, "Bandwidth Assessment of Cooperative Surveillance Systems", 2019 3rd International Conference on Advanced Information and Communications Technologies (AICT), 2019. doi: 10.1109/aiact.2019.8847742.

I. Obod, I. Svyd, O. Maltsev, O. Vorgul, G. Maistrenko and G. Zavolodko, "Optimization of Data Transfer in Cooperative Surveillance Systems", 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), 2018. doi: 10.1109/infocommst.2018.8632134.

I. Svyd, I. Obod, O. Maltsev, T. Okachova and G. Zavolodko, "Optimal Request Signals Detection in Cooperative Surveillance Systems", 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), 2019. doi: 10.1109/ukrcon.2019.8879840.

J. Qumar, S. Christopher and R. Bhattacharjee, "Target detection with transmitters identity waveform for multi-dynamic radar scenario", 2017 IEEE Calcutta Conference (CALCON), 2017. doi: 10.1109/calcon.2017.8280730.

I. Svyd, I. Obod, O. Maltsev, O. Vorgul, I. Vorgul and I. Shevtsov, "Method for Increasing the Interference Immunity of the Channel for Measuring of the Short-Range Navigation Radio System", 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), 2022. doi: 10.1109/tcset55632.2022.9767069.

I. Svyd, I. Obod, O. Maltsev, O. Vorgul, V. Chumak and A. Sierikov, "Analysis of the Impact of Interference on the Time Position of Signals in Requesting Airspace Observation Systems", 2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T), 2021. doi: 10.1109/picst54195.2021.9772138.

I. Svyd, I. Obod, O. Maltsev, O. Vorgul, V. Chumak and B. Bakumenko, "Estimation of the Spatial Coordinates of Air Objects in Synchronous Radar Networks for Airspace Observation", 2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T), 2021. doi: 10.1109/picst54195.2021.9772227.

G. Benelli, D. Giuli, E. Mese and S. Pardini, "Characterization of ATC environment for performance evaluation of modern SSR systems", 29th IEEE Vehicular Technology Conference, 1979. doi: 10.1109/vtc.1979.1622720.

Маляренко А.С. Системы вторичной радиолокации для управления воздушным движением и государственного радиолокационного опознавания [Справочник], ХУПС, 2007, 78 с.

І.І. Обод, В.В. Шевцова. Порівняльний аналіз запитальних систем передачі інформації системи контролю повітряного простору // Збірник наук. праць Харківського національного університету Повітряних Сил. 2013. № 1(34). С. 123-125.

І.І. Обод, В.В. Шевцова. Відносна пропускна спроможність запитальних систем передачі інформації системи контроля повітряного простору // Системи обробки інформації. 2013. № 2(109). С. 74-76.

V. Zhyrnov, S. Solonskaya, and I. Shubin, “Evaluation of radar image processing efficiency based on intelligent analysis of processes”, RT, vol. 4, no. 207, pp. 83–88, 2021. doi: 10.30837/rt.2021.4.207.09.

Обод И.И. Помехоустойчивые системы вторичной радиолокации. Москва : ЦИНТ, 1998. 118 с.

І.І. Обод, В.В. Шевцова. Пропускна спроможність відповідачів запитальних систем передачі польотної інформації // Системи обробки інформації. 2013. № 1(108). С. 105-108.

И.И. Обод. Управление потоками сигналов в несинхронных сетях запросных систем вторичной локации // Радиоэлектроника и информатика. 1998. № 2. С. 4-5.

И.И. Обод. Сравнительная оценка помехоустойчивости несинхронных и синхронных сетей запросных систем вторичной локации // Вестник ХГПУ. 1998. № 15. С. 58-61.

И.И. Обод, В.В. Глущенко, И.В. Коваль. Методы повышения помехоустойчивости самолетных ответчиков запросных систем вторичной локации // Вестник ХГПУ. 1999. № 34. С. 84-86.

И.И. Обод. Повышение эффективности систем управления воздушного движения за счет реализации разнесенных систем вторичной радиолокации // Радиоэлектроника и информатика. 1997. Вып. 1. С. 63-64.

Б.В. Бакуменко, І.І. Обод. Методи підвищення завадозахищеності запитувальних радіотехнічних систем // Системи обробки інформації. 2006. № 9(58). С. 10-12.

І.І. Обод, О.О. Стрельницький, В.А. Андрусевич. Структура та показники якості обробки інформації систем спостереження повітряного простору // Системи обробки інформації. 2013. № 8 (115). С. 80-83.

M. K. Abdul-Hussein, O. Strelnytskyi, I. Obod, I. Svyd and H. Alrikabi, "Evaluation of the Interference’s Impact of Cooperative Surveillance Systems Signals Processing for Healthcare", International Journal of Online and Biomedical Engineering (iJOE), vol. 18, no. 03, pp. 43-59, 2022. doi: 10.3991/ijoe.v18i03.28015

М. Ткач, «Оцінка відносної пропускної здатності літакових відповідачів вторинних радіолокаційних систем спостереження повітряного простору», Радіотехніка, № 207, 2021, С. 123-131.

W.C. Young; Ming-Ten Tsai; Li-Min Chuang. Air traffic control system management. Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093). doi: 10.1109/NAECON.2000.894952.

Jiang Chaoshu; Liu Changzhong; Wang Xuegang. GPS synchronized wide area multilateration system. 2009 International Conference on Communications, Circuits and Systems. DOI: 10.1109/ICCCAS.2009.5250465

Y. Sun, F. Zhang and Q. Wan, "Wireless sensor network-based localization method using TDOA measurements in MPR", IEEE Sensors J., vol. 19, no. 10, pp. 3741-3750, Jan. 2019.

Published

2022-06-24

How to Cite

Svyd, I. ., Semenets, V. ., Maltsev, O. ., Tkach, M. ., Starokozhev, S. ., Datsenko, O. ., & Shevtsov, I. . (2022). Comparative analysis of methods for determining the air objects’ coordinates using wide-area multilateration systems. Radiotekhnika, 2(209), 162–177. https://doi.org/10.30837/rt.2022.2.209.16

Issue

Section

Articles