Influence of the active region structure of the resonant tunneling diode on the critical points of its current-voltage characteristic
DOI:
https://doi.org/10.30837/rt.2022.1.208.07Keywords:
resonant-tunnel diode, volt-ampere characteristic, barrier, tunneling, quantum well, structure; energy, waveAbstract
The article proposes a study of the effect of the structure of the active region of a resonant tunneling diode on the critical points of its current-voltage characteristic. The basic configuration of a resonant tunneling diode, which is a structure of a quantum well with a nanometer-sized double barrier including two contacts, and a region with strongly doped contacts made of a semiconductor with a relatively small band gap, is disclosed and illustrated. It is emphasized that since the characteristic dimensions of the structure of the quantum well with a double barrier are comparable to the wavelengths of electrons, the wave nature of electrons leads to such quantum phenomena as interference, tunneling, energy quantization, etc. the double barrier causes resonant tunneling phenomena, which form the basis for the operation of the resonant-tunneling diode. It is emphasized that repeated reflection causes destructive or constructive interference depending on the wavelength of a particular electron. For electrons with a certain wavelength that promotes constructive interference, a transfer probability close to unity can be found at energies corresponding to these wavelengths. The modification of the active region of the resonant tunnel diode with a barrier height of 0.3 - 0.4 eV is mathematically substantiated. The dependence of the transmission coefficient is found by solving the Schrödinger equation in one electron approximation without taking into account the scattering effects. The calculation of the volt-ampere characteristic of the resonant-tunnel diode was performed at temperatures of 100 and 300 K. The given volt-ampere characteristics were obtained without taking into account the effects of electron scattering. However, it should be noted that the main influencing factor is the resonant tunneling through the second level, for which the peak of the transmission coefficient is much wider and higher. However, in gallium doped arsenide, the fact of electron scattering can significantly affect the value of the transmission coefficient and the value of current. It is established that an increase in the width of quantum wells leads to a significant decrease in the densities of peak currents and valley currents, and an increase in the width of potential barriers leads to a slight decrease in the current density of the first peak and current densities of the second peak and valley.
References
Иогансен Л.В. О возможности резонансного прохождения электронов в кристаллах через системы барьеров // ЖЭТФ. 1963 Т. 45 № 2 С. 207–213.
Ховерко, Ю. М. Мікроелектронні сенсори на основі КНІ-структур з рекристалізованим шаром полікремнію [Текст]: дис... канд. техн. наук: 05.27.01 / Ховерко Юрій Миколайович; Національний ун-т "Львівська політехніка". – Л., 2003. – 168 с.
Семенов А. О. Методи і пристрої генерування та формування сигналів з регулярною й хаотичною динамікою для інфокомунікаційних систем. – Кваліфікаційна наукова праця на правах рукопису. Дисертація на здобуття наукового ступеня доктора технічних наук за спеціальністю 05.12.13 «Радіотехнічні пристрої та засоби телекомунікацій» (172 – Телекомунікації та радіотехніка). – Вінницький національний технічний університет, Національний університет “Львівська політехніка” МОН України, Вінниця, 2019. 463 с.
Осадчук О. В. Дослідження реактивних властивостей тунельно-резонансного діода / О. В. Осадчук, В. С. Осадчук, Я. О. Осадчук // Вісник Хмельницького національного університету. Технічні науки. – 2020. – № 4(1). – С. 160-167. – Режим доступу: http://nbuv.gov.ua/UJRN/Vchnu_tekh_2020_4(1)__29.
Динамічні закономірності резонансних квантових систем [Текст] : дис. ... канд. фіз.-мат. наук : 01.04.02 / Іванов Микита Анатолійович ; Дніпропетр. нац. ун-т. – Дніпропетровськ, 2015. – 115 с. : іл.
Малий Є.В. Властивості дефектів структури у фосфіді галію та їхній вплив на параметри світлодіодів. – Кваліфікаційна наукова праця на правах рукопису. Дисертація на здобуття наукового ступеня кандидата фізикоматематичних наук (доктора філософії) за спеціальністю 01.04.07 «Фізика твердого тіла» – Південноукраїнський національний педагогічний університет ім. К.Д. Ушинського, Одеса, 2019. 154 с.
Huang, Keh-Ching. (2021). Characterization of resonant tunneling diodes. ETD Collection for Purdue University.
Ortega-Piwonka, Ignacio & Piro, Oreste & Figueiredo, José & Romeira, Bruno & Javaloyes, Julien. (2021). Bursting and Excitability in Neuromorphic Resonant Tunneling Diodes. Physical Review Applied. 15. 10.1103/PhysRevApplied.15.034017.
Halimatus Saadiah, Warsuzarina Mat Jubadi, Nabihah Ahmad and M. Hairol Jabbar. Resonant Tunneling Diode Design for Oscillator Circuit. International Postgraduate Conference. Physics 2017, P. 1–8.
Khanna, Vinod. (2020). Resonant Tunneling Diodes. 10.1201/9781351204675-24.
Jian Pind Sun, George J. Haddad, Pinaki Mazumder and Joel N. Schulman. Resonant Tunneling Diodes: Models and Properties. Proceedings of The JEEE, vol. 86, N 4, April 1998, P. 641–661.
Feiginov, Michael. (2020). THz resonant-tunnelling diodes. 20. 10.1117/12.2559674.
Bhukya, Revathi & Hampika, Gorla & Guduri, Manisha. (2020). Resonant Tunneling Diodes: Working and Applications. 10.1007/978-981-15-5089-8_17.
Awan, Jram Taj. Optical and Transport of p-i-n GaAs-AlAs resonant tunneling diode. Jram Taj Awan – Sao Carlos: UFS Car, 2014, P. 85.
Cimbri, Davide & Wasige, E.. (2021). Terahertz Communications with Resonant Tunnelling Diodes. 10.1201/9781003001140-3.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).