One approach to the design of individual mathematical models of security in wireless sensor networks

Authors

DOI:

https://doi.org/10.30837/rt.2021.4.207.08

Keywords:

wireless sensor network, malware, boundary value problem

Abstract

The current level of development of engineering and technology is characterized by a constant expansion of the variety and complexity of mechanical and controlled objects, the operation of which occurs in a continuous-discrete time mode. One of these objects is the process of spreading malicious software in wireless sensor networks, the constant growth of trends towards which is due to their use as a single type of self-organized data transmission network with the least labor intensity and low cost.

The concept of building sensor networks has not been formed at all. Therefore, the study of certain properties of such networks is very important for both domestic and world science. Moreover, for the strategically important sectors of the country, in particular defense, the protection of wireless sensor networks is a very important component.

A new model of malware distribution is proposed, which is described by some boundary value problem for an impulsive dynamical system on a time scale.

References

Liu B. Malware propagations in wireless ad hoc networks / B. Liu, W. Zhou, L. Gao, H. Zhou, T. H. Luan, S. Wen // IEEE Trans. Dependable Secur. Comput. 2018. Vol. 15. P. 1016–1026.

Wu X. Nodes availability analysis of NB-IoT based heterogeneous wireless sensor networks under malware infection / X. Wu, Q. Cao, J. Jin, Y. Li, H. Zhang // Wirel. Commun. Mob. Comput. 2019. Vol. 2019.

Queiruga-Dios A., Encinas A. H., Martín-Vaquero J., Encinas L. H. Malware propagation models in wireless sensor networks: a review, 2016 // International Joint Conference «SOCO’16-CISIS’16-ICEUTE’16». 2017. Vol. 527. P. 648–657.

Zhu L., Zhao H., Wang X. Stability and bifurcation analysis in a delayed reaction-diffusion malware propagation model // Comput. Math. Appl. 2015. Vol. 69. P. 852–875.

Feng L. Modeling and stability analysis of worm propagation in wireless sensor network / L. Feng, L. Song, Q. Zhao, H. Wang // Math. Probl. Eng. 2015. Vol. 2015. P. 1–8.

Shen S. A non-cooperative non-zero-sum game-based dependability assessment of heterogeneous WSNs with malware diffusion / S. Shen, H. Ma, E. Fan, K. Hu, S. Yu, J. Liu, Q. Cao // J. Netw. Comput. Appl. 2017. Vol. 91. P. 26–35.

Acarali D. Modelling the spread of botnet malware in IoT-based wireless sensor networks / D. Acarali, M. Rajarajan, N. Komninos, B. B. Zarpelão // Secur. Commun. Netw. 2019. Vol. 2019. https://doi.org/10.1155/2019/3745619.

Shen S. SNIRD: disclosing rules of malware spread in heterogeneous wireless sensor networks / S. Shen, H. Zhou, S. Feng, J. Liu, Q. Cao // IEEE Access. 2019. Vol. 7. P. 92881–92892.

Wang Y., Li D., Dong N. Cellular automata malware propagation model for WSN based on multi-player evolutionary game // IET Netw. 2018. Vol. 7. P. 129–135.

A. M. del Rey, J. H. Guillén, G. R. Sánchez. Modeling malware propagation in wireless sensor networks with individual-based models // Conference of the Spanish Association for Artificial Intelligence. Springer. Cham. Switzerland. 2016. P. 194–203.

Wang T. Propagation modeling and defending of a mobile sensor worm in wireless sensor and actuator networks / T. Wang, Q. Wu, S. Wen, Y. Cai, H. Tian, Y. Chen, B. Wang // Sensors. 2017. Vol. 17(1). P. 139.

Batista F. K. , Á. M. del Rey, Quintero-Bonilla S. , Queiruga-Dios A. A SEIR model for computer virus spreading based on cellular automata, 2017 // International Joint Conference «SOCO’17-CISIS’17-ICEUTE’17». 2018. Vol. 649. P. 641–650.

Bose A., Shin K. G. Agent-based modeling of malware dynamics in heterogeneous environments // Secur. Commun. Netw. 2013. Vol. 6. P. 1576–1589.

Hosseini S., Azgomi M. A., Rahmani A. Agent-based simulation of the dynamics of malware propagation in scale-free networks // Simulation. 2016. Vol. 92. P. 709–722. https://doi.org/10.1177/0037549716656060

Batista F. K., del Rey A. M., Queiruga-Dios A. A new individual-based model to simulate malware propagation in wireless sensor networks // Sensors. 2020. Vol 8 (3). P. 410. https://doi.org/10.3390/math8030410.

Bohner M., Peterson A. Dynamic equations on time scales. An introduction with applications. MA. Boston : Birkhauser Boston Inc, 2001.

Boichuk A. A., Samoilenko A. M. Generalized inverse operators and fredholm boundary-value problems. Netherlands. Utrecht: Koninklijke Brill NV. 2004.

Agarwal R. Fredholm boundary value problems for perturbed systems of dynamic equations on time scales / R. Agarwal, M. Bohner, A. Bo˘ichuk, O. Strakh // Mathematical Methods in the Applied Sciences. 2014. https://doi.org/10.1002/mma.3356.

Strakh O. P. Linear noetherian boundary-value problems for impulsive dynamic systems on a time scale // Journal of Mathematical Sciences. 2014. Vol. 201 (3). P. 400–406. https://doi.org/10.1007/s10958-014-1999-4.

Published

2021-12-24

How to Cite

Kotukh, Y. ., Lyubchak, V. ., & Strakh, O. . (2021). One approach to the design of individual mathematical models of security in wireless sensor networks. Radiotekhnika, 4(207), 78–82. https://doi.org/10.30837/rt.2021.4.207.08

Issue

Section

Articles