5 G communication network signal propagation models

Authors

DOI:

https://doi.org/10.30837/rt.2021.2.205.17

Keywords:

5G communication networks, electromagnetic compatibility, mathematical model of signal propagation

Abstract

The next generation 5G / IMT-2020 technology, like any new technology, brings its own specific features to all aspects related to the practice of its application. One of these particularly important aspects is electromagnetic compatibility. At the stage of preparation for the introduction of 5G radio networks, called NewRadio, it is necessary to take early measures to assess effectively the electromagnetic compatibility conditions for these networks based on a thorough analysis of the features of 5G technology. Correct and accurate assessments of these conditions means successful provision of the electromagnetic compatibility of radio equipment of new networks.

The World Radio Communication Conference WRC-15 identified new radio frequency bands for 5G, including centimeter and millimeter wave bands. In general, this RF spectrum is located in three regions: below 1 GHz, 1 GHz to 6 GHz, and above 6 GHz (up to 100 GHz). From the EMC standpoint, the following can be distinguished as the main features of this spectrum: different nature of losses during signal propagation, in particular, a significant influence of additional factors (gases – oxygen, water vapor, etc.) on the level of losses previously unknown in cellular communication.

The mathematical model of signal propagation of 5 G communication networks has been developed which takes into account: the attenuation of signals in free space; attenuation of signals caused by the influence of walls and floor slabs, loss of signal energy, when space is filled with various objects; attenuation of signals caused by loss of energy of radio waves, when propagating through rains; signal attenuation due to loss of radio wave energy due to fog; signal attenuation, when propagating through tree leaves, slow and fast random fading.

References

3GPP TR 22.891. Feasibility Study on New Services and Markets Technology Enablers. Ver. 14.2.0, Sep. 2016.

3GPP TR 38.913. Study on Scenarios and Requirements for Next Generation Access Technologies. Ver. 14.3.0, June 2017.

3GPP TS 28.554. Management and orchestration; 5G end to end Key Performance Indicators (KPI). Ver. 2.0.0, release 15, Sep 2018.

5G PPP Architecture Working Group white paper. View on 5G Architecture. July 2016.

Abuarqoub A. Behaviour Profiling in Healthcare Applications Using the Internet of Things Technology / Abuarqoub A., Hammoudeh M. H. // Proceedings of Fourth International Conference on Advances in Information Processing and Communication Technology. 2016. P. 1-4. DOI:https://doi.org/10.15224/978-1-63248-099-6-25

Agiwal M. Next generation 5G wireless networks: A comprehensive survey / Agiwal M., Roy A., Saxena N // IEEE Communications Surveys & Tutorials. 2016. №18(3). Р. 1617-1655. DOI:https://doi.org/10.1109/COMST.2016.2532458

Aijaz A. Realizing the Tactile Internet: Haptic Communications over Next Generation 5G Cellular Networks / A.Aijaz, M.Dohler, A.H.Aghvami, V.Friderikos, Frodigh M. // IEEE Wireless Comm. 2017. 24(2). Р. 82-89. DOI:https://doi.org/10.1109/MWC.2016.1500157RP

Aijaz A. Shaping 5G for the Tactile Internet / Aijaz A.; Simsek M.; Dohler M. and Fettweis G. // 5G Mobile Communications. Springer International Publishing, pp.677-691, 2017. DOI:https://doi.org/10.1007/978-3-319-34208-5_25

Aijaz A. Towards 5G-enabled tactile internet: Radio resource allocation for haptic communications // Proceedings of the 2016 IEEE Wireless Communications and Networking Conference (WCNC), Doha, Qatar, 3-6 April 2016. Р. 1-6. DOI:https://doi.org/10.1109/WCNC.2016.7564661

Бородин А. С. Сети связи пятого поколения как основа цифровой экономики / А.С. Бородин, А.Е. Кучерявый // Электросвязь. 2017. №5. С. 47-51.

Radio Regulations. Ed. ITU. In 4 vol. 2016.

Resolution COM 6/20 (WRC-15) Studies on frequency-related matters for International Mobile Telecommunications identification including possible additional allocations to the mobile services on a primary basis in portion(s) of the frequency range between 24.25 and 86 GHz for the future development of International Mobile Telecommunications for 2020 and beyond.

Бабков В.Ю. Сети мобильной связи. Частотно-территориальное планирование / В.Ю. Бабков, М.А. Вознюк, П.А. Михайлов. Москва : Горячая линия – Телеком, 2007. 224 с.

Тихвинский В.О. Технологии 5G – базис мобильной инфраструктуры цифровой экономики // Элек-тросвязь. 2018. № 3. С. 49–55.

Куракова Т.П. Имитация радиоканалов миллиметрового диапазона поколения 5G : дис. … канд. техн. наук ; ФГУП НИИР//http://diss.vlsu.ru/uploads/media/Dissertacija_ Kurakovoi.pdf.

Kurakova T. How ITU can help develop future networks/ T. Kurakova, M.Valdburger // ITU News. 2013. № 1. Р. 38-41. DOI:https://doi.org/10.1525/aft.2013.41.3.38

Молчанов Д.А. Разработка подходов, методов исследования и моделей обеспечения показателей качества обслуживания в беспроводных сетях пятого поколения : дис. … д-ра техн. наук ; Рос. ун-т дружбы народов. Москва, 2019. 306 с.

Кременецька Я.А. Аналіз обмежуючих та компенсуючих факторів при розрахунку енергетичної ефективності радіосистем в міліметровому діапазоні /Я.А. Кременецька, С.Ю. Марков, Н.В. Градобоєва, Є.М. Харченко // Телекомунікаційні та інформаційні технології. 2019. №1. С. 12-21. Режим досту-пу: http://nbuv.gov.ua/UJRN/vduikt_2019_1_4 . DOI: 10.31673/2412-4338.2019.011221

Griffiths D. J. Introduction to Electrodynamics. 4th ed. Pearson. Boston, 2013. Р. 347.

Williams, T. EMC for Product Designers // Elsevier Science & Technology, 2016. P. 513.

Коляденко Ю.Ю. Математическая модель взаимодействия элементов системы абонентского радиодоступа // Праці УНДІРТ. Теоретичний та науково-практичний журнал радіозв’язку, радіомовлення і телебачення. 2004. №1 (37). С. 31-35.

Recommendation ITU-R PN.452.

Recommendation ITU-R PN.525.

Recommendation ITU-R РN.526.

Recommendation ITU-R P.1146.

Recommendation ITU-R PN.452-8.

Published

2021-07-02

How to Cite

Kolyadenko, Y. ., & Chursanov , N. . (2021). 5 G communication network signal propagation models . Radiotekhnika, 2(205), 161–168. https://doi.org/10.30837/rt.2021.2.205.17

Issue

Section

Articles