Modification of active region of resonant tunnel diode


  • К.S. Yatsun



potential barrier, quantum constraint, tunneling, quantum well, Schrödinger equation, negative differential conductivity, resonant-tunnel diode


Interest in the study of mesoscopic structures has grown significantly in recent years. This is primarily due to the development of semiconductor technology, which makes it possible to create structures with sizes of the order of units and tens of nanometers. The linear dimensions of such structures are inferior to the de Broglie wavelength of electrons, so the transport of electrons is determined mainly by their wave properties, which, in turn, leads to a number of new effects.

Mesoscopic structures include the resonant tunnel diode (RTD), first proposed by Esaki and Tsu, and which is one of the first nanoelectronic devices. It consists of a semiconductor layer with a fairly narrow band gap, a quantum well (QW) layer located between two semiconductor layers (barriers) with a wider band gap. These layers, in turn, are located between the layers (spacers) of weakly doped narrow semiconductor, followed by highly doped layers of the emitter and collector. There are one or more energy levels of dimensional quantization in the QW. Under the action of bias voltage, the current passes through the RTD only if the emitter contains electrons that can tunnel. Resonant tunneling occurs at the energy level in the QW, and from there to the collector, where the spectrum of energy states is band. RTD has a very high speed of action, for example, it is known that the nonlinear properties of RTD persist up to 104 THz. The RTD is also of great power: it is the only device of nanoelectronics that can be used at room temperatures, and on the VAC of the RTD the areas of negative differential conductivity (NDC) are observed.

In this article, the principle of a resonant tunneling diode is revealed, and the phenomena of tunneling in nanophysics are examined in detail. The volt-ampere characteristic (VAC) model of a two-barrier resonance tunnel diode is calculated. The paper investigates how the change of transparency coefficients and the reflection of the potential barrier of a rectangular shape affect the VAC of the RTD. This study can be the basis for further consideration of how the modification of the active region of the resonant tunnel diode affects its characteristics. In addition, the results of the research allow us to estimate qualitatively the energy required by electrons for tunneling through the structure of the RTD.


Chang L.L., Esaki L., Tsu R. Applied Physics Letters. Maryland, 1974. Vol 24. 593 p.

Поздняков Д.В. Расчет вольт-амперных характеристик симметричных двухбарьерных резонансно-туннельных структур на основе арсенида галлия с учетом процессов разрушения когерентности элек-тронных волн в квантовой яме // Физика и техника полупроводников. Москва : Наука, 2004. Т.38. Вып. 9. С. 1097–1100.

Абрамов И.И. Исследование двухбарьерной резонансно-туннельной структур на основе GaАs/АlАs с использованием комбинированной двухзонной модели // Доклады Бгуир, 2004. Вып.4. С. 42–46.

Врубель М.М. О влиянии ширины спейсерных слоев на размеры области бистабильности в вольт-амперных характеристиках двухбарьерных туннельных резонансных диодов // Письма в ЖТФ, 1997. Т. 23. Вып. 21. С. 12–16.

Иогансен Л.В. Журнал экспериментальной и теоретической физики. Москва :Наука, 1963. Т.45. Вып. 2. 2207 с.

Агарев В.Н. Моделирование резонансного туннелирования в полупроводниковых наноструктурах. ННГУ Фонд образовательных электронных ресурсов, 2008.



How to Cite

Yatsun К. . (2021). Modification of active region of resonant tunnel diode . Radiotekhnika, 2(205), 108–112.