Dispersion of nanoparticles in optically transparent polymer matrices

Authors

DOI:

https://doi.org/10.30837/rt.2021.1.204.12

Keywords:

dispersion of nanoparticles, nanomaterials, optically transparent polymer matrices

Abstract

Search and analysis of results of theoretical and experimental studies, materials of dissertations, literature sources and patents in the field of optical and optoelectronic instrumentation were carried out. Obtained data and recommendations on the development of methods for dispersing nanoparticles into polymer matrices for the creation of optically transparent nan composites for use in many fields of science and technology are generalized. Analysis of considered results makes it possible to conclude that for creating hybrid organic-inorganic composites with high level of dispersion of inorganic component, it is necessary to solve problems relating to compatibility of components and stabilization of filler nanoparticles in polymer matrix. Due to the limited range of hydrophilic polymers capable of forming composites with nanoparticles without stabilizers, the main approaches to the preparation of hybrid composites are using modifying additives of surfactants, as well as complex chemical reactions on the surface of inorganic filler nanoparticles. Such methods of obtaining nanocomposites with nanoparticles are laborious and involve formation of by-products and additional purification. It is shown that titanium dioxide (TiO2) and zinc oxide (ZnO) are of great interest among a large number of nanodispersed fillers of polymer matrices in preparing composite materials. There are many methods for synthesis of ZnO and TiO2 nanoparticles with various shapes and sizes, including laser ablation method, which is convenient and universal method for preparing nanosuspensions of solid-phase materials in liquid. Advantages over other methods for nanoparticle synthesis, such as the simplicity of method, environmental friendliness, low cost, and the ability to obtain cleaner colloidal solutions without using surfactants and other impurities, have made laser ablation in a liquid medium very popular among researchers.

References

Герасин В.А., Антипов Е.М., Карбушев В.В., Куличихин В.Г., Карпачева Г.П., Тальрозе Р.В., Кудрявцев Я.В. Новые подходы к созданию гибридных полимерных нанокомпозитов: от конструкционных материалов к высокотехнологичным применениям // Успехи химии. 2013. Т. 82. № 4. C. 303–332.

Denisyuk I.Yu., Williams T.R., Burunkova J.E. Hybrid Optical Material with Nanoparticles at High Concentrations in UV-Curable Polymers – Technology and Properties // Molecular Crystals and Liquid Crystals. 2008. Vol. 497. P. 142–153.

Шапорев А.С., Ванецев А.С., Кирюхин Д.П., Соколов М.Н., Бузник В.М. Синтез полимерных композитов на основе золей ZnO, CeO2 и Gd2O3 // Конденсированные среды и межфазные границы. 2011. Т. 13. № 3. C. 374–380.

Трофимчук Е.С., Никонорова Н.И., Нестерова Е.А., Музафаров А.М., Мешков И.Б., Волынский А.Л., Бакеев Н.Ф. Получение пленочных композитов на основе крейзованных полимеров и наночастиц силиказоля // Российские нанотехнологии. 2009. Т. 4. № 9. C. 164–166.

Позднякова С.А. Струкурирование и самоорганизация нанокомпозитов в поле световой волны : дис. … канд. физ.-мат. наук. 2014. 120 с.

Полянская В.В. Органо-неорганические нанокомпозиты на основе оксидов металлов и полиолефинов, деформированных по механизму крейзинга : дис. … канд. хим. наук. 2015. 138 с.

Серова В.Н. Оптические и другие материалы на основе прозрачных полимеров : монография / Федер. агентство по образованию. Казан. гос. технол. ун-т. Казань : КГТУ, 2010. 540 с.

Бурункова Ю.Э., Денисюк И.Ю., Шекланова Е.Б., Фокина М.И. Оптические полимерные нанокомпозиты. СПб : Ун-т ИТМО, 2017. 80 с.

Nussbaumer R. J., Caseri W. R., Smith P., Th Tervoort. Polymer‐TiO2 nanocomposites: a route towards visually transparent broadband UV filters and high refractive index materials // Macromol. Mater. Eng. 2003. V. 288. № 1. P. 44-49.

Озерин А. Н., Перов Н. С., Зеленецкий А. Н., Акопова Т. А., Озерина Л. А., Кечекьян А. С., Сурин Н. М., Владимиров Л. В., Юловская В. Д. Гибридные нанокомпозиты на основе привитого сополимера хитозана с поливиниловым спиртом и оксида титана // Российские нанотехнологии. 2009. Т. 4. № 5-6. С. 76-79.

Baratony M.-I., Merhariz L., Wangx J., Gonsalves K. E. Investigation of the TiO2/PPV nanocomposite for gas sensing applications // Nanotechnology. 1998. V. 9. № 4. P. 356-359.

Shnitzler D.C., Zabrin J.G. J. Organic/Inorganic hybrid materials formed from TiO2 nanoparticles and polyaniline // Braz. Chem. Soc. 2004. V. 15. No №3. P. 378-384.

Jimenez Rioboo R.J., De Andres A., Kubacka A., Fernandez-Garcia M., Cerrada M.L., Serrano C. Influence of nanoparticles on elastic and optical properties of a polymeric matrix: Hypersonic studies on ethylene–vinyl alcohol copolymer-titania nanocomposites // Europ. Polym. J. 2010. V. 46. P. 397-403.

Rong Y., Chen H.-Z., Wu G., Wang M. Preparation and characterization of titanium dioxide nanoparti-cle/polystyrene composites via radical polymerization // Materials Chemistry and Physics. 2005. V. 91. No 2-3. P. 370-374.

Caris C. H. M., Van Elven L. P. M., Van Herk A. M., A. L. German. Polymerization of MMA at the surface of inorganic submicron particles // British Polymer Journal. 1989. V. 21. No 2. P. 133-140.

Нгуен Ван Нган. Разработка композиционных материалов на основе эпоксисодержащих олигомеров с повышенной химической и биологической стойкостью : дис. …канд. хим. наук / Нгуен Ван Нган. 2019. 139 с.

Патент РФ № 2380726 Пластмассовый сцинтиллятор с наноструктурированными люминофорами. Публикация патента: 27.01.2010 г.

Патент РФ № 2505569 Кремнийорганическая композиция. Публикация патента: 27.01.2014 г.

Горяйнова О.А., Мельникова Е.В., Кузьмин К. Эффективность диспергирования порошка Al2О3 в бисерной мельнице / Новосибир. гос. техн. ун-т // XХ Междунар. науч.-практ. конф. «Современные техника и технологии». 2013. Секция 6: Материаловедение.

Серова В.Н., Идрисов Р.А., Шевцова С.А., Морозов О.А., Ловчев А.В. Получение полимерных пле-ночных материалов, содержащих нанокристаллы фторида празеодима // Вестник Казан. гос. технол. ун-та. Казань, 2014. С.152-154.

Semaltianos N.G., Logothetidis S., Frangis N., Tsiaoussis I., Perrie W., Dearden G., Watkins K.G., Chem. Phys. Lett. 496 (2010) 113.

Kim K.K. et al. Formation of ZnO nanoparticles by laser ablation in neat water / Chemical Physics Letters 511 (2011) 116–120.

Ch. He, Sasaki T., Usui H., Shimizu Y., Koshizaki N. Fabrication of ZnO nanoparticles by pulsed laser ablation in aqueous media and pH-dependent particle size: An approach to study the mechanism of enhanced green photoluminescence // Journal of Photochemistry and Photobiology A: Chemistry 191 (2007) 66–73.

Published

2021-04-09

How to Cite

Borshchov, V. ., Listratenko, O. ., Protsenko, M. ., Tymchuk, I. ., Kravchenko, O. ., Syddia, O. ., Slipchenko, M. ., & Chichkov, B. . (2021). Dispersion of nanoparticles in optically transparent polymer matrices. Radiotekhnika, 1(204), 105–114. https://doi.org/10.30837/rt.2021.1.204.12

Issue

Section

Articles