Statistical properties of derived signal systems

Authors

  • A.A. Zamula Харківський національний університет імені В.Н. Каразіна, Ukraine https://orcid.org/0000-0002-8973-6190
  • I.D. Gorbenko Харківський національний університет імені В.Н. Каразіна, АТ «Інститут інформаційних технологій», Ukraine https://orcid.org/0000-0003-4616-3449
  • Ho Tri Luc Харківський національний університет імені В.Н. Каразіна, Ukraine

DOI:

https://doi.org/10.30837/rt.2020.4.203.14

Keywords:

testing of derived signals, discrete sequences, noise immunity of signal reception, cryptographic signal, derived signal, orthogonal signal, statistical properties of signals

Abstract

The search for effective methods of synthesis of discrete signals (sequences) that correspond to the potentially possible limiting characteristics of correlation functions and possess the necessary correlation, structural, ensemble properties remains an urgent problem. The authors have proposed a method for the synthesis of derivatives of signal systems, for which orthogonal signals are used as the initial ones, and nonlinear discrete complex cryptographic signals (CS) are used as generating signals. The synthesis of the latter ones is based on the use of random (pseudo-random) processes, including algorithms for cryptographic information transformation. Derivative signals synthesized in this way have improved (in comparison with linear signal classes) ensemble and correlation properties, while the statistical properties of such signal systems remain unexplored. The paper presents the results of testing derived signal systems using the tests defined in FIPS PUB 140 and NIST 800-22. Analysis of the results obtained allows us to assert that the statistical properties of this class of derived signals satisfy the requirements for pseudo-random sequences: unpredictability, irreversibility, randomness, independence of symbols, etc. In essence, such signals do not differ from random sequences. The use of the proposed class of derived signals will improve the performance of signal reception noise immunity, information security and secrecy of the ICS functioning.

References

Sarvate D.V. Crosleration Properties of Pseudorandom and Related Sequences / D.V. Sarvate, M.V. Parsley // IEEE Trans. Commun. 1980. Vol. Com 68. P. 59–90.

Варакин Л. Е. Системы связи с шумоподобными сигналами. Москва : Сов. радио. 1985. 384 с.

Ipatov Valery P. Spread Spectrum and CDMA. Principles and Applications / University of Turku, Finland and St. Petersburg Electrotechnical University ‘LETI’. Russia. John Wiley & Sons Ltd. The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England. 2005. 385 p.

Gorbenko I. D., Zamula А. А., Ho Tri Luk Synthesis of derivatives of complex signals based on nonlinear discrete sequences with improved correlation properties // Радіотехніка. 2019. Вип. 199. С. 110-120.

Gorbenko I. D., Zamula А. А., Tri Luc Ho Derived signals systems for information communication systems applications: synthesis, formation, processing and properties // International Conference problems of info communications science and technology PIC S&T′2020. 6-9. October 2020. Kharkov, Ukraine. P. 3-10.

Горбенко І.Д., Горбенко Ю.І. Прикладна криптологія. Теорія. Практика. Застосування. Харків : Форт, 2012. 880 с.

Горбенко Ю.І. Побудова, аналіз, стандартизація та застосування криптографічних систем ; за ред. І.Д. Горбенко. Харків : Форт, 2015. 959 с.

Application Notes and Interpretation of the Scheme (AIS) 20. Functionality classes and evaluation met-hodology for physical random number generators. Certification body of the BSI in context of certification scheme. BSI, 1999.

Andrea Rock. Pseudorandom Number Generators for Cryptographic Applications // Diplomarbeit zur Erlangung des Magistergrades an der Naturwissenschaftlichen Fakultat der Paris-London-Universitat Salzburg. Salzburg, 2005.

NIST 800-22 A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, 2000.

Published

2020-12-23

How to Cite

Zamula, A., Gorbenko, I., & Luc, H. T. (2020). Statistical properties of derived signal systems. Radiotekhnika, 4(203), 141–147. https://doi.org/10.30837/rt.2020.4.203.14

Issue

Section

Articles